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Abstract— The use of detailed models over long horizons
in predictive control can be computationally challenging. Fur-
thermore, always-present uncertainty renders the use of such
sophisticated detailed models over long time horizons ques-
tionable due to the resulting variability of the trajectories. We
propose a multi-stage scheme that combines the use of models
of different granularity – using detailed models for short-term
predictions, while performing long-term predictions with less
detailed models. Using projection and invariance properties for
the different model complexities and the transitions between
them, we show that this scheme is recursively feasible. In
a simulation study, we show how two models of different
complexity can be combined for steering a mobile robot through
a landscape with obstacles.

I. INTRODUCTION

Predictive control techniques compute control actions
based on the predictions of the system’s behavior that are
obtained using a mathematical model. In particular, Model
Predictive Control (MPC) solves an optimization problem in
a receding-horizon fashion to compute optimal control ac-
tions subject to constraints, minimizing a given objective, see
e.g. [1]–[4]. The accuracy of the model used for the predic-
tions has a crucial impact on the closed-loop performance, as
well as on the satisfaction of constraints and even on stability
properties. Often, researchers and practitioners spend large
efforts on the development of detailed mathematical models
for optimal control. This trend can be observed in different
fields, most notably in chemical engineering ([5], [6]).

However, while detailed models allow one to overcome
model uncertainty, it is often still unavoidable due to the dif-
ficulty to accurately identify model parameters and because
of the presence of unpredictable disturbances and variations.
Such uncertainties put into question whether it is reasonable
to use very detailed (but uncertain) models for long-term
predictions as the unavoidable disturbance will deteriorate
the prediction quality. One might wonder, if less detailed
models could be sufficient for long horizons, as long as
detailed models are used for short-horizon predictions.

Following this idea, we propose to use models of different
granularity along the prediction horizon in this work. That
is, detailed models are used for the near future, so that strict
requirements can be met, but coarser models are used for
distant and uncertain predictions, since the use of a detailed
model might not increase the amount of information obtained
from the predictions. The use of coarser models for distant
predictions might not only reduce the computational effort by
reducing the number of decision variables. It may also better
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suit the process of decision-making under uncertainty. That
is, in many situations, long-term planning needs different
types of decisions or different descriptions of the reality. For
example, an automatically-driven car (see e.g. [7]) should
decide on steering and acceleration on the short term, but it
may decide on predefined tasks (such as overtaking, turning,
stopping, etc.) on a larger horizon. To some degree, this
idea of combining short-horizon control with long-horizon
planning can even be based on behaviors observed in nature
and biology, like the walking motion of a human or animal.

In practice, using different models for different prediction
lengths is widely used ([8]). Optimization on the company
level is typically performed statically, while on the factory
and machine level, some kind of dynamic model is used. The
optimizations are typically performed separately, however.
Similar ideas have been described in the field of optimization,
e.g. in [9], where the numerical approximations of the
nonlinear program are updated at higher frequencies for the
first part of the predictions, compared to the predictions of
the distant future. However, to the best of our knowledge, no
systematic theory for guaranteeing recursive feasibility and
stability has been derived, yet.

Successfully connecting models of different granularity for
the proposed control scheme relies on several assumptions.
Most notably, a projection that guarantees consistency has
to be found. Such projections as well as the difference in
granularity potentially introduce uncertainties into the mod-
els, which need to be taken into account. Different strategies
have been proposed to counteract the effect of uncertainty in
MPC, usually named as robust MPC approaches. Examples
are min-max MPC ([10], [11]), relaxation-based MPC ([12]),
scenario-tree-based MPC ([13], [14]), and tube-based MPC
([15], [2]), among others ([16]).

While any robust MPC scheme could be exploited for the
presented idea, we focus on tube-based methods to coun-
teract the uncertainty that is introduced into the predictions
by the use of a coarse model. For the outlined approach,
we derive the conditions for the recursive feasibility of a
predictive controller that uses different models along the
prediction horizon based on invariance notions. We illustrate
the approach with simulation results of a mobile robot.

The remainder of the paper is structured as follows.
The problem setup with the necessary assumptions and the
construction of an optimal control problem is presented in
Section II. This leads to the main contribution of the paper
– the proof of recursive feasibility – in Section III. The
approach is illustrated by simulation results presented in
Section IV before the paper is concluded with a summary
and ideas on possibly future extensions in Section V.
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II. PROBLEM SETUP

We consider two models of a nonlinear discrete time
system,

x+ = f(x, u)

s.t. x ∈ X
u ∈ U

(1)

z+ = g(z, v)

s.t. z ∈ Z
v ∈ V,

(2)

where x ∈ Rnx and z ∈ Rnz denote the states, x+ and
z+ the states at the next time instant, and u ∈ Rnu and
v ∈ Rnv the inputs. The inputs and states are constrained by
the compact and convex sets U/V and X/Z, respectively.

Following the main idea of the paper, the models f and g
are of different granularity, that is, (1) is a “detailed” model
of a plant, while (2) is a “coarse” representation of that plant.
Usually, nz ≤ nx and nv ≤ nu. Note that the coarse model
can have different inputs – such as set points – in comparison
to the detailed model. We connect these different models over
the prediction by the following projection.

Assumption 2.1 (Projection): We assume that there exists
a surjective projection function Proj : Rnx ×Rnu → Rnz ×
Rnv that maps the states x and inputs u of the detailed system
(1) to the states z and inputs v of the coarse system (2).

Remark 2.2: One way to fulfill Assumption 2.1 is to use
a reduced model of f for g, e.g. one that uses only a subset
of the system states of f , or to exploit model reduction
techniques ([17]).

Assumption 2.3 (Projection of Constraint Sets): We fur-
ther assume that the constraint sets Z and V for the coarse
model (2) are calculated by projecting the detailed model
(1)’s constraint sets X and U using the projection function
from Assumption 2.1, i.e, (Z,V) = Proj(X,U). Proj being
surjective implies that there exists at least one pair (x, u) ∈
X×U for each (z, v) ∈ Z×V so that (z, v) = Proj(x, u).

A. MPC with Models of Different Granularity

We use the detailed model f for the first part of the
prediction in an optimal control problem, from the first time
step at k = 0 up to a transition time step ks (short horizon),
and the coarse model g afterwards, from k = ks up to a final
time step kf (long horizon).

During the long-horizon stage of the prediction, we cap-
ture the possible lack of some state and input information
caused by using a coarse instead of a detailed model by
an appended additive uncertainty d as well as uncertain
initial conditions for the prediction with that coarse model.
Extending (2), zd and vd denote the states and inputs of such
an uncertain coarse system

z+d = g(zd, vd) + d

s.t. zd ∈ Z
vd ∈ V
d ∈ D.

(3)

System (3), affected by the bounded uncertainty d ∈ D,
still has to satisfy the state and input constraints Z and V.
Note that bounding model uncertainty is in general difficult.

z(k)
constraints Z

time k

x(k)

0 ks kf

constraints X

short horizon/
detailed model

long horizon/
coarse model

(z(ks), v(ks)) =

Proj(x(ks), u(ks))

x̃0

x(k) ∈ X
z(k) ∈ Zn

zd(k) ∈ Z

z(kf ) ∈ Zf

Fig. 1. Sketch of the control scheme. A detailed model is used for the short-
horizon prediction from 0 to ks, a coarse model is used for the long horizon
up to kf. Tube-based MPC controls the uncertain model, so that it satisfies
constraints. A projection between the models guarantees consistency.

However, recent advances in uncertain model predictions
([18], [19]) raise hope that this will be less challenging in the
near future. Furthermore, for certain systems, like the robot
example considered in Section IV, this is possible based on
physical insights.

In order to guarantee that using an uncertain model like (3)
for the long-horizon stage of the prediction does not result in
a violation of constraints, a robust control scheme needs to
be applied, like those mentioned in Section I. We concentrate
on ideas from tube-based MPC in this paper, as formulated
e.g. in [2], [20], and [21]. Other robust MPC approaches
would also work. In Section III, we build upon such ideas to
prove recursive feasibility for the presented control scheme.

Commonly, in tube-based MPC, a standard MPC approach
is used to find an optimal solution trajectory for a nominal
system like (2), restricted by tighter constraint sets Zn and
Vn. Then, local control laws vd at each time step guarantee
that an extended uncertain system like (3) is robustly stable
around that nominal trajectory. This effectively spans a tube
around the nominal trajectory, so that satisfaction of the
tighter constraint sets Zn and Vn by the nominal system
states z with the controller v is equivalent to the uncertain
system states zd with controller vd not violating the original
constraint sets Z and V, cf. Fig. 1.

Assumption 2.4 (Feasible Tube-based MPC): We assume
that, given a constraint set D for the additive uncertainty d of
an uncertain model (3), there exist tightened constraint sets
Vn and Zn, such that, if z ∈ Zn and v ∈ Vn for the nominal
system (2), there exists zd ∈ Z and vd ∈ V for the uncertain
dynamics (3).

In general, the control law vd and the tightened constraint
sets Zn and Vn depend on the uncertainty constraint set D.
Details about the determination of a such a control law vd
can for example be found in [2].

The set D is typically derived from known bounds on the
uncertainty in tube-based MPC approaches. Here, however,
it needs to be calculated based on the “difference” in gran-
ularity of the two used system models. It serves to maintain
consistency between the models, so that the uncertain coarse
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model (3) can be interpreted as an over-approximation of the
detailed model (1) – while living in different state and input
spaces.

Assumption 2.5 (Consistency of Models): We assume
that we can calculate a constraint set D, such that, if a
control law vd, robustly stabilizing a pair (z, v), can be
found for that D, there exists a pair (x, u) for the same
time instance, for which (z, v) = Proj(x, u) and for which
∃x+ = f(x, u) ∈ X. It is further assumed that D is compact
and contains the origin in its interior.

Then, the constraint sets Zn and Vn for the nominal coarse
system can be computed depending on D.

B. Optimal Control Problem

We now formulate an optimization problem for the de-
scribed scheme that finds optimal control inputs based on
cost functions lx, Vf,x, lz , and Vf,z , starting from the current
state x̃0:

min
{u(0),...,u(ks)},
{v(ks),...,v(kf−1)}

ks−1∑
k=0

lx(x(k), u(k)) + Vf,x(x(ks))

+

kf−1∑
k=ks

lz(z(k), v(k)) + Vf,z(z(kf))

(4a)

s.t. x(0) = x̃0, (4b)
x(k + 1) = f(x(k), u(k)),

x(k) ∈ X, u(k) ∈ U, ∀k = 0, . . . , ks − 1,
(4c)

(z(ks), v(ks)) = Proj(x(ks), u(ks)) ⊆ Zn × Vn, (4d)
z(k + 1) = g(z(k), v(k)),

z(k) ∈ Zn, v(k) ∈ Vn, ∀k = ks, . . . , kf − 1,
(4e)

z(kf) ∈ Zf ⊆ Zn . (4f)

The cost function (4a) shows the two-stage nature of the
prediction. Following the constraint (4c), the detailed model
f is used for the short-horizon prediction, while the coarse
model g is used for the long-horizon prediction, via (4e). The
constraint (4d) maps between the two models at the transition
time ks. The control invariant set Zf in constraint (4f) is used
as a terminal region.

Note that u(ks) is an optimization variable (degree of
freedom) for (4a), even though it is not used in the cost
functions or in the prediction of the detailed model in
constraint (4c). Due to the construction of the projection
function Proj in Assumption 2.1, u(ks) is however necessary
for finding a corresponding v(ks) in constraint (4d). At
the same time, this can be interpreted as the long-horizon
prediction stage being able to cope with uncertain initial
conditions, similar to how tube-based MPC approaches can
deal with those, see e.g. [2].

In the next section, we show that the presented op-
timization problem is recursively feasible. Considering a
simple model for a mobile robot, we demonstrate the control
approach in Section IV.

III. RECURSIVE FEASIBILITY

Establishing recursive feasibility for the presented ap-
proach, as a necessary requirement for use in a receding-
horizon control scheme, can rely on standard MPC theory.
However, special attention is required at the transitions where
the prediction starts using the coarse model instead of the
detailed one.

Assumption 3.1 (Initial Feasibility): We assume that
the optimization problem (4), constructed based on
the mentioned assumptions, is feasible for k = 0.
That is, an optimizer can find a solution sequence
{u(0|0), . . . , u(ks|0); v(ks|0), . . . , v(kf − 1|0)}.

Here, u(i|j) denotes the control input at time i, calculated
at time j. This notation can be used equivalently with x, z,
and v. With Assumption 3.1 holding, Assumption 2.4 is also
satisfied, since the tube-based MPC design is embedded into
the optimization problem.

Proposition 3.2 (Recursive Feasibility): If Assumptions
2.1, 2.3, 2.5, and 3.1 hold, the optimization problem (4)
remains feasible for all k ≥ 1.

Proof: Since the optimization problem is feasible
according to Assumption 3.1, we can shift the prediction
horizon by one time step in the next iteration of the receding-
horizon scheme. Then, the solution sequence for u from
k = 1 to ks − 1 can be reused as it is still feasible
after the shift. That is, {u(1|1), . . . , u(ks − 1|1)} can be
set to {u(1|0), . . . , u(ks − 1|0)} as there is no model-plant
mismatch.

The same is possible for u(ks|1) = u(ks|0), even though
u(ks|0) has not been used for the prediction of a state
x(ks + 1|0) ∈ X (compare constraint (4c)). That holds, as
x(ks + 1|1) ∈ X will hold due to the consistency of the
models assumed in Assumption 2.5, as a consequence of the
feasibility of (z(ks|0), v(ks|0)) ∈ Zn × Vn. A new solution
piece has to be found only for u(ks+1|1). This will be possi-
ble as there was a feasible pair (z(ks + 1|0), v(ks + 1|0)) ∈
Zn×Vn, which could be reused as (z(ks + 1|1), v(ks + 1|1)),
so that, by construction of the projection function in Assump-
tion 2.1, there must be a pair (x(ks + 1|1), u(ks + 1|1)).

Similar to how u(0|0) is applied to the controlled plant
in a receding-horizon manner and then no longer taken into
account in the further prediction, v(ks|0) can be neglected
in the next time step. Then, in a similar fashion as before,
the solution sequence for v from k = ks + 1 to kf − 1 can
be reused. Thus, {v(ks + 1|1), . . . , v(kf − 1|1)} can be set
to {v(ks + 1|0), . . . , v(kf − 1|0)}. A new v(kf|1) can then
always be found, as the tube at kf is a control invariant set
due to the terminal constraint (4f).

In summary, parts of the control input sequence from the
previous iteration can be reused for both the detailed and
the coarse system and an initial solution sequence exists
from Assumption 3.1. Thus, the optimization problem (4)
is recursively feasible.

Note that we focus solely on recursive feasibility in this
work. Showing stability in a tailored sense is also possible.
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IV. EXAMPLE

In this section, we use the presented scheme to control the
motion of a simple robot through a known landscape with
obstacles. The goal for the robot is to move from a starting
point x̃0 to a destination point x̃f without touching the ob-
stacles, which are modeled as time-varying state constraints,
cf. Fig. 2.

landscape
robot

target
point

obstacle
path

Fig. 2. Visualization of the considered control problem, a mobile robot
moving to a target point in a landscape with obstacles.

A. Modeling a Simple Mobile Robot
We consider two models for the 2D motion of a mobile

robot with omnidirectional wheels. A detailed model is given
by a double integrator with sampling time ∆t:
px
vx
py
vy


+

︸ ︷︷ ︸
x+

=


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


︸ ︷︷ ︸

A


px
vx
py
vy


︸ ︷︷ ︸

x

+


0 0

∆t 1
m 0

0 0
0 ∆t 1

m


︸ ︷︷ ︸

B

(
Fx

Fy

)
︸ ︷︷ ︸

u

.

(5)
px and py resemble the robot’s position in the 2D space and
vx and vy its velocity in the two directions. The acceleration
forces Fx and Fy serve as control inputs. The model param-
eters are m = 0.5 kg and ∆t = 0.5 s. Both the states and
the control inputs are box-constrained: The states px and py
must be in [0, 30] m, py must be in [−1, 1] m, the velocities
vx and vy must be in [−3, 3] m/s and the acceleration forces
Fx and Fy must be in [−3, 3] N. Additionally, there are
constraints on the positional state py resembling obstacles
in the landscape of motion: 0.4 m ≤ py ≤ 1 m for 3 s ≤ t ≤
3.5 s and −1 m ≤ py ≤ −0.3 m for 7 s ≤ t ≤ 7.5 s.

Further, we consider a simpler description of the robot’s
motion as the coarse model, given by(

px
py

)+

︸ ︷︷ ︸
z+

=

[
1 0
0 1

]
︸ ︷︷ ︸
Acoarse

(
px
py

)
︸ ︷︷ ︸

z

+

[
∆t 0
0 ∆t

]
︸ ︷︷ ︸

Bcoarse

(
vx
vy

)
︸ ︷︷ ︸

v

, (6)

which uses the detailed model’s position states px and py ,
but does not know about the velocity dynamics vx and vy
and instead treats those as control inputs. The given model
parameters and constraint sets are reused correspondingly.
Using such simplified models is standard in robotics and path
planning, however, such approaches are typically applied
heuristically. For this example, it is possible to find a simple
projection function (compare Assumption 2.1)

(
z
v

)
= Proj

((
x
u

))
=


1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

(xu
)

(7)

that maps both models at the switching time (see con-
straint (4d)).

B. Controller Design

Following the reasoning in Section II, we can derive an
uncertain coarse model(

px,d
py,d

)+

︸ ︷︷ ︸
z+

d

=

[
1 0
0 1

]
︸ ︷︷ ︸
Acoarse

(
px,d
py,d

)
︸ ︷︷ ︸

zd

+

[
∆t 0
0 ∆t

]
︸ ︷︷ ︸

Bcoarse

(
vx,d
vy,d

)
︸ ︷︷ ︸

vd

+

(
dx
dy

)
︸ ︷︷ ︸

d

,

(8)
whose uncertain states and inputs are still constrained, i.e.,
z+d ∈ Z and v+d ∈ V. In this example, there is no uncertain
initial condition for the states of the coarse model, as those
are also states of the detailed model. In general, however,
an initial uncertainty can be caused by the projection at the
transition time (cf. Fig. 1).

In order to design the proposed controller, it is necessary
to compute the set D so that Assumption 2.5 is satisfied.
While, in general, this computation can be challenging, in
many cases, physical knowledge about the system can be
used to derive a suitable D. For the given example, the
coarse model neglects the robot’s velocity dynamics and
instead assumes that it can be changed instantaneously as a
control input. Due to those dynamics, this assumption does
not hold for the detailed model, because of the constrained
acceleration forces. Since the maximum acceleration force
of the detailed model is ±3 N, resulting in a maximum
acceleration of ±6 m/s2 for a 0.5 kg robot, we can tighten
the velocity constraints for the coarse model to ±1.5 m/s,
with the sampling time ∆t = 0.5 s. In this example, this
fulfills Assumption 2.5 for any D. To illustrate that tightening
the constraint sets does not necessarily lead to conservatism,
we also enlarge the obstacles in the coarse prediction by
0.1 m.

We use standard quadratic stage cost functions lx(x, u) =
(x − xref)

TQx(x − xref) + (u − uref)
TRx(u − uref) and

lz(z, v) = (z−zref)
TQz(z−zref)+(v−vref)

TRz(v−vref). The
terminal costs are chosen to be equal to the stage costs and
the weighting matrices are Qx = diag(1, 0, 10, 0), Rx =
diag(0.1, 0.1), Qz = diag(1, 1), and Rz = diag(1, 1).
The transition time step is set to ks = 5 and the overall
prediction horizon is kf = 20, equaling 10 s. We use xref =(
30 0 0 0

)T
and uref =

(
0 0

)T
and their projections

zref =
(
30 0

)T
and vref =

(
0 0

)T
as the references in the

cost functions.

C. Simulation Results

In the following, we present the results obtained from
the solution of optimization problem (4) in a receding hori-
zon manner. Simulations were performed using MATLAB’s
fmincon solver on a standard desktop PC.

Fig. 3 shows the predicted optimal trajectories of the states
and control inputs of the detailed model (left) and of the
coarse model (right). It can be seen that the constraint for
the first obstacle is satisfied during the detailed prediction.
During the longer coarse predictions, a tightened constraint
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as explained above, resembling an enlarged second obstacle,
is satisfied.

As can be seen in Fig. 4, the proposed approach success-
fully drives the system to the target point of the detailed
model xref =

(
30 0 0 0

)T
. The conservativeness that

one might expect from the satisfaction of the tightened con-
straints in the coarse predictions, see Fig. 3(b), is not visible
in the closed-loop results. It vanishes once the obstacles enter
the detailed prediction horizon, where their corresponding
constraint sets are no longer tightened. As a result, the
closed-loop trajectory can exploit the obstacle constraints
better than predicted in the coarse predictions (see Fig. 4(a)).

While the same constraint satisfaction can be achieved
with a standard MPC controller that uses the detailed model
for the full prediction, the presented approach only needs a
coarse model for a large part of that prediction. Additionally,
even without special optimizations in the code, the approach
was roughly 30 % faster per MPC iteration than a standard
MPC controller. While exact numbers will depend on the
actual control problem, one can in general expect a reduced
computational cost.

V. SUMMARY AND CONCLUSIONS

In this work, we presented an extended Model Predictive
Control scheme that exploits the granularity of different mod-
els for a plant by using them for a prediction in consecutive
stages. While a detailed model is used for the short-term
prediction, a coarse or reduced model is used for long-
term prediction. This can be interpreted as using the detailed
model for the calculation of control inputs for the immediate
future, while using a rougher or even uncertain model for
path or trajectory planning in the far future, where exact
control actions are not yet necessary. By design, one could
even use different mathematical system classes or types for
the models. Compared to standard MPC approaches, the
scheme can also reduce the amount of decisions for an
optimizer – and therefore the computational effort – while
maintaining equally long predictions horizons.

Based on assumptions about the existence of suitable
projections between the spaces that the different models
live in, we showed that the approach is recursively feasible.
Thus, it is possible to use the scheme in a receding-horizon
controller, which is then further shown in a simulation
example. In that, different models for a simple mobile robot
are combined, allowing the robot to predict far into the future
in order to find a way through an obstructed landscape, while
having to compute a detailed control signal only for a short
horizon.

Possible extensions to the presented approach include
using several models of different granularity, instead of just
two models, as used for brevity in this work. This requires
suitable projection functions for those models that share
common states and inputs, in their respective state and input
spaces. It is also possible to use an uncertain model even
in the first stage, which by itself is already controlled by a
robust MPC scheme. This idea is visualized in Fig. 5.

0

10

20

p
x
[m

]

2 4
−1

0

1

Time [s]

p
y
[m

]

(a) Predicted position states
for the detailed model.
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(b) Predicted position states for the coarse
model. The dashed black line indicates the
tightened constraint sets.
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for the detailed model.
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(d) Calculated control inputs for the coarse
model.
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(e) Calculated control inputs
for the detailed model.

Fig. 3. Prediction sequences for the detailed (left) and coarse models (right)
at the third time step of the simulation (t = 1.5 s). The transition between
the models occurs at t = 4 s.

Building upon the presented results for recursive feasi-
bility, future works could focus on other system properties
like stability. It would also be possible to investigate how
other types of uncertainty, e.g. uncertain parameters, could be
exploited. Further research could be put into finding efficient
ways for calculating the constraint sets that are used by the
approach.
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