
Scenario-based Model Predictive Control:
Recursive Feasibility and Stability
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Abstract: Many processes are influenced by uncertain parameters or external disturbances,
such as temperature changes. The control of such systems is in general challenging. In this
work, we consider robust multi-scenario Model Predictive Control (MPC). Its central idea is to
assume a finite number of possible values for the uncertainties and to model their combinations
in a scenario tree. We adapt the classical dual mode approach of nominal MPC to establish
recursive feasibility and stability for the multi-scenario case, using a common terminal region
and common terminal cost function for all uncertainty realizations. For linear systems, the
computation of these ingredients can be formulated as a semidefinite program. In a simulation,
we apply the suggested approach to building climate control and show that it robustly stabilizes
the system while a standard MPC controller violates state constraints and becomes infeasible.
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scenario tree; building climate control.

1. INTRODUCTION

Model Predictive Control (MPC) is an optimization-based
control scheme naturally capable of dealing with multi-
input multi-output systems. In addition, MPC allows to
include input and state constraints in the controller design.
For these reasons, MPC is increasingly used in industrial
applications (Mayne (2014); Di Cairano (2012); Qin and
Badgwell (2003)).

However, MPC needs an accurate model to predict the
system behavior and to achieve good and reliable per-
formance. Unfortunately, uncertainties (e.g. noise, un-
known disturbances, model-plant-mismatch due to inac-
curate modeling) are always present and deteriorate the
performance of the controller. They may also destroy im-
portant properties like recursive feasibility and stability.
For this reason, extensions to MPC have been developed
over the last few decades that allow to explicitly take
uncertainties into account, guaranteeing constraint satis-
faction, recursive feasibility, and stability. This includes
e.g. min-max MPC (Rawlings and Mayne (2009)), tube-
based MPC (Mayne et al. (2006, 2009)), feedback MPC
(Mayne et al. (2000); Bertsekas (2005)), and relaxation-
based robust MPC (Streif et al. (2014)).

In the frame of this work, we consider scenario-based ro-
bust MPC, also denoted as Multi-Scenario Model Predic-
tive Control (MS-MPC), see e.g. Lucia et al. (2012). The
central idea of this approach is to assume or approximate
discrete values for an uncertainty and to capture their
1 Support by the International Max Plank Research School (IM-
PRS) for Advanced Methods in Process and Systems Engineering,
Magdeburg, Germany, is acknowledged.

combinations over time by means of a scenario tree. Each
scenario starts from the root node (the initial value x(k))
and ends in one of the leaves (cf. Fig. 1).

Fig. 1. Scenario tree with a prediction horizon of N =
2 and the discrete uncertain parameter set P =
{p1, p2}. The time instant is set to k := 0.

While this is an approximation for continuous distur-
bances, the approach shows good performance compared
to standard MPC if the uncertainty values are selected
suitably. In addition, it could be shown that the multi-
scenario optimization problem remains feasible where
standard MPC does not (Lucia et al. (2012)).

A major drawback of MS-MPC is that the problem size
grows exponentially with the prediction horizon and the
numbers of uncertain parameters and different values that
these parameters can take. One way to circumvent this
problem is to assume that the scenario tree stops branch-
ing further after a defined stage within the prediction hori-
zon, called robust horizon Nr (Lucia and Engell (2012)).
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In this work, we investigate how to adapt MPC to guar-
antee recursive feasibility and stability for the described
multi-scenario case, using a terminal region, a terminal
penalty, and a virtual local control law. The contributions
of this paper can be summarized as follows:

• Adaptation of the stability approaches of nominal
MPC to guarantee recursive feasibility and stability
for the multi-scenario case.
• Computation of suitable terminal regions and termi-

nal cost functions for multiple scenarios.
• Application of MS-MPC to building climate control,

namely the cooling of a cold storage house.

The outline of the paper is as follows. Section 2 presents
the MS-MPC problem formulation and the necessary
adaptations to establish recursive feasibility and stability.
This leads to the definition of a suitable common terminal
region and common terminal cost function, which are
investigated in detail and computed in Section 3. After-
wards, the MS-MPC scheme is employed for an example
of building climate control in Section 4. The work con-
cludes with Section 5, which summarizes the results and
highlights possible future extensions.

2. MULTI-SCENARIO MODEL PREDICTIVE
CONTROL

We consider a general nonlinear discrete time system

x+ = f(x, u, p)

s.t. x ∈ X
u ∈ U
p ∈ P ,

(1)

where x ∈ Rnx denotes the states, x+ the states at
the next time instant, u ∈ Rnu the inputs, and p ∈
Rnp the uncertain parameters. The inputs and states are
constrained by the closed and convex sets U and X . The
fundamental assumption of the MS-MPC approach is that,
at each time step, the uncertainties p are drawn from
a discrete set of the form P = {pi ∈ Rnp | i = 1, . . . , s},
with s ∈ N denoting the number of possible values p
can take. A discrete set P may be the true nature of a
specific uncertainty, e.g. the number of lost packages in a
communication network or the possible faults in a system
(fault-tolerant control). Likewise, a discrete set P may
arise from the discretization of a continuous set (Goodwin
et al. (2009)).

We consider all unique combinatorial permutations of the
elements of P over the prediction horizon. For a given
prediction horizon N ∈ N and the total number s of
possible values of the parameter p, the number of possible
combinations is Ns = sN . These unique combinations are
represented by the parameter sequences

pj(k) =
{
pj(k), pj(k + 1), . . . , pj(k +N − 1)

}
with pj(k + i) ∈ P for all i ∈ I0:N−1 = {0, . . . , N − 1}
and all j ∈ I1:Ns

= {1, . . . , Ns}. The superscript j is the
scenario index and k denotes the current time step. We call
each of these sequences pj(k) a parameter scenario as it
resembles a unique realization of the uncertain parameter
evolution over the prediction horizon.

In total, we obtain Ns different parameter scenarios and to
each of them, we can associate a predicted input and state

sequence ûj(k) and x̂j(k). Predicted variables are denoted
with a ·̂. To account for the different scenarios, we write
the prediction model as

x̂j(k + 1 + i) = f
(
x̂j(k + i), ûj(k + i), pj(k + i)

)
(2)

with i ∈ I0:N−1 and j ∈ I1:Ns
.

Scenario tree complexity In the scenario tree, the con-
trols leaving one node have to be the same for all scenarios
that share that particular node because they are based
on the same past information and no exact uncertainty
realization can be anticipated. These are the so-called non-
anticipatory constraints (Goodwin et al. (2009)). They can
be reformulated as linear equality constraints of the form

Γx̃(k) = 0

Γũ(k) = 0 ,
(3)

where Γ is a sparse matrix of appropriate dimensions and
x̃(k) and ũ(k) are the extended state and input sequences
containing the states and inputs of all scenarios. The non-
anticipatory constraints matrices are the same for states
and inputs because equal inputs are computed for equal
states (or nodes) in the scenario tree.

In the general case, ũ(k) consists of NsN elements, the
prediction horizon multiplied by the number of scenarios.
Yet, the non-anticipatory constraints reduce the number of
independent optimization variables in ũ(k). This number
is equal to the sum of all nodes from the root node to the

nodes at the penultimate stage,
∑N−1

i=0 si = sN−1
s−1 .

The inherent computational reduction can be expressed by∑N−1
i=0 si

NsN
=

sN−1
s−1

NsN
=

sN − 1

NsN (s− 1)
(4)

and can then be approximated for large s or N by

≈ sN

NsN (s− 1)
=

1

N(s− 1)
. (5)

Thus, for large s or N , (5) computes the percentage to
which the number of optimization variables is reduced,
compared to all elements in ũ(k). For instance, for s = 6
and N = 8, the number of optimization variables is
reduced to 2.5 % of the total number of optimization
variables contained in ũ(k) for that case. However, despite
the reduction by the non-anticipatory constraints, the
number of independent optimization variables still grows
exponentially with the prediction horizon.

Cost function As it is unknown which of the scenarios
will be the actual realization of the uncertainty evolution,
all of them have to be taken into consideration, i.e.,
we have to optimize over the full scenario tree. In this
optimization, we use the cost function

VN (x(k), ũ(k)) =

Ns∑
j=1

ωjJj (6)

with

Jj =

N−1∑
i=0

`
(
x̂j(k + i), ûj(k + i)

)
+ Vf

(
x̂j(k +N)

)
,

where Jj is the cost associated with scenario j, i.e., the
cost of one branch from the root node x(k) to its final leaf
node x̂j(k + N). The stage cost is `(·) and Vf(x) denotes
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the terminal cost function which is assumed to be the same
for all scenarios. For a specific scenario, its probability to
occur is given by ωj . The sum over all probabilities has to

be one, i.e.,
∑Ns

j=1 ωj = 1.

2.1 Recursive Feasibility

The scenario formulation transforms the initially uncertain
problem into a nominal MPC problem by spanning a
scenario tree. Therefore, we can make use of nominal MPC
theory to establish recursive feasibility and stability for
MS-MPC. In particular, we adapt the classical approach of
nominal MPC, see e.g. Findeisen et al. (2007) or Rawlings
and Mayne (2009), where the terminal state ends in a
control invariant terminal region and is penalized by a
suitable terminal cost function. For the sake of clarity, we
neglect the estimate nature, indicated by ·̂, of the state
and input prediction.

We assume that the following two assumptions hold:

Assumption 1. (Continuity). The functions f(x, u, p),
`(x, u), and Vf(x) are continuous, with f(0, 0, p) = 0 ∀p ∈
P, `(0, 0) = 0, and Vf(0) = 0.

Assumption 2. (Constraints). The sets X and Xf ⊆ X are
closed, and U is compact. Each set contains the origin.

Establishing recursive feasibility is equal to requiring that
the terminal state of each scenario ends in a control
invariant terminal region. We assume that this region is the
same for all scenarios and denote it as common terminal
region Ωf (cf. Fig. 2).

Fig. 2. Scenario tree with s = 2 and N = 2 and appended
terminal region.

The question which arises is, how to define and obtain a
common control invariant terminal region for all scenarios.
To this end, we look at the problem in a different way. Each
realization of the parameter p ∈ P = {p1, . . . , ps} can be
interpreted as a realization or instance of the given system,
i.e.,

x+ = f(x, u, pj), ∀j ∈ {1, . . . , s}
↓

x+ = fj(x, u), ∀j ∈ {1, . . . , s} .
This way, we can also reinterpret the scenario tree in
such a way that the branching is caused by switching
to another system realization (cf. Fig. 3). At each node
of the tree, the state evolves according to the current
system instance. This is also true at the terminal state.
Assuming that the state is in the terminal region Ωf at
i = N , recursive feasibility translates to ensuring that
the state stays in Ωf for all possible system instances.

Fig. 3. Scenario tree using system instances.

Thus, a suitable terminal region must be invariant for the
s different system instances.

Assumption 3. (Common terminal region). The common
terminal region Ωf is control invariant for x+ = fj(x, u),
∀j ∈ {1, . . . , s} with u ∈ U .

Proposition 4. (Recursive feasibility). Suppose that As-
sumptions 1, 2, and 3 hold, then the multi-scenario MPC
is recursively feasible.

Proof. Following the proof for the nominal case and using
the notation from Rawlings and Mayne (2009), let ΩN

be the set of all initial conditions for which a solution
to the multi-scenario optimal control problem exists. The
underlying idea is to set Ω0 := Ωf and to define

Ω1 =
{
x ∈ X | ∃u ∈ U : fj(x, u) ∈ Ω0 ∀j ∈ {1, . . . , s}

}
.

So, Ω1 is the set of all states for which a control can be
found such that the state is driven to Ωf, independent
from the exact system instance. This implies that Ωf ⊆
Ω1. Since Ωf is control invariant by Assumption 3, it
follows that Ω1 is also control invariant. By backward
recursion and induction, we arrive at the conclusion that
ΩN is positive invariant and hence, multi-scenario MPC is
recursively feasible.

2.2 Stability

To establish stability, we need more assumptions on the
stage and terminal costs, `(·) and Vf(x), respectively.
Since the proposed formulation assigns an individual cost
function to each scenario, it also provides the framework
to include an individual terminal cost function V j

f (x) to
each scenario.

Assumption 5. (Basic stability assumption). For all x ∈
Ωf and for all j ∈ {1, . . . , Ns},

min
ũ(k)∈U

{
V j

f (f(x, u, p)) + `(x, u) | f(x, u, p) ∈ Ωf

}
≤ V j

f (x)

holds for all p ∈ P.

This implies that, for each uncertainty realization, there
exists an input such that the terminal region is control
invariant, i.e., Assumption 5 implies Assumption 3. Note
that Assumption 5 is satisfied, if each V j

f (x) is a control
Lyapunov function for all p ∈ P. Furthermore, Assump-
tion 5 only states that each terminal cost function V j

f (x)
has to satisfy the descent property, but not whether all
V j

f (x) have to be different or equal. Thus, if one Lyapunov
function Vf(x) that satisfies this property can be found, it
can also be used for all remaining scenarios. Hence, as in
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the case of the terminal region, we can use one common
terminal cost function Vf(x). However, this is just a special

case of the foregoing assumption. All V j
f (x) can be differ-

ent, as long as Assumption 5 is satisfied. Furthermore, we
assume:

Assumption 6. (Bounds on stage and terminal costs).

The stage cost `(x, u) and the terminal costs V j
f (x) satisfy

`(x, u) ≥ α1(|x|) ∀x ∈ ΩN , ∀u ∈ U
V j

f (x) ≤ αj
2(|x|) ∀x ∈ Ωf and ∀j ∈ {1, . . . , Ns},

in which α1(x) and αj
2(x) are K∞ functions.

We can now formulate the following theorem:

Theorem 7. (Multi-scenario MPC stability). Suppose that
Assumption 1, 2, 3, 5, and 6 are satisfied and that Ωf

contains the origin in its interior. Then, the origin is
asymptotically stable with a region of attraction ΩN for
the system x+ = fj(x, κN (x)) for all j ∈ {1, . . . , s}.

Proof. We again follow the structure of the proof for
the nominal case, see e.g. Rawlings and Mayne (2009).
The basic idea is that Assumptions 1, 2, and 3 need to
be satisfied for recursive feasibility. Assumptions 5 and 6
ensure that the value function is a Lyapunov function for
x+ = fj(x, κN (x)) for all j ∈ {1, . . . , s} on the domain ΩN .
Hence, the origin is asymptotically stable for all system
instances.

2.3 Multi-scenario MPC formulation

The multi-scenario optimal control problem formulation
used in MPC becomes

min
ũ(k)

VN (x(k), ũ(k))

s.t. ∀i ∈ I0:N−1 and ∀j ∈ I1:Ns :

x̂j(k + i+ 1) = f
(
x̂j(k + i), ûj(k + i), pj(k + i)

)
x̂j(k) = x(k)

ûj(k + i) ∈ U
x̂j(k + i) ∈ X
x̂j(k +N) ∈ Ωf

pj(k + i) ∈ P
Γũ(k) = 0 ,

(7)

where x(k) is the initial condition. The solution to (7) is
denoted by ũ∗(k) and its first element û∗(k) is applied
to the plant. Hence, MPC establishes the control law
u(k) = κN (x(k)) = û∗(k). If the solution is inserted into
the cost function, we obtain the so-called value function
VN
(
x(k), ũ∗(k)

)
.

3. TERMINAL REGION COMPUTATION

In the previous section, we presented an approach that
guarantees recursive feasibility and stability for multi-
scenario MPC, using suitable terminal regions and ter-
minal penalties. The determination of these ingredients is
very challenging in the general nonlinear case. Therefore,

we focus on the linear case in this section and show how to
obtain a common terminal region and a common terminal
cost function, such that Assumptions 3, 5, and 6 are satis-
fied. For that purpose, we use a quadratic function as the
common terminal cost and a linear terminal control law. A
level set of the cost function serves as the common terminal
region. Constraint satisfaction is achieved by using the
support function of the involved sets. The determination of
the common terminal region is formulated as a semidefinite
program.

3.1 Invariance of the Terminal Region

We consider a linear discrete time system of the form

x+ = Ajx+Bju, ∀j ∈ {1, . . . , s}
s.t. x ∈ X

u ∈ U ,
(8)

where the matrices Aj and Bj are realizations of the
uncertain parameter p ∈ P.

For the terminal controller, we choose the linear control
law u = κf(x) = Kx with K = RP and P = PT > 0 of
appropriate dimensions. For the common terminal cost, we
use the quadratic function Vf (x) = xTPx. The variables
to be computed are the matrices R and P . The matrix
P is determined such that Vf(x) is a Lyapunov function
for all closed-loop system instances. Therefore, P must be
positive definite and we need to ensure that Vf(x

+)−Vf(x)
is negative semidefinite for all system instances. Inserting
the system (8) and algebraic reformulation yields

Q− (AjQ+BjR)
T
Q−1 (AjQ+BjR) ≥ 0 (9)

for all j ∈ {1, . . . , s} with Q = P−1. The sought variables
are Q and R and they appear in a nonlinear manner in
(9), which makes their determination difficult. Therefore,
the expression is reformulated into a set of linear matrix
inequalities (LMIs) by means of the Schur complement
(Boyd and Vandenberghe (2004)). We obtain[

Q (AjQ+BjR)

(AjQ+BjR)
T

Q

]
≥ 0, ∀j ∈ {1, . . . , s} ,

(10)

which is equivalent to (9) and hence, can be used instead
of it.

This is a set of LMIs, which are affine in the unknowns Q
and R. Hence, (10) can be solved efficiently and yields the
matrix P that on the one hand makes Vf (x) = xTPx a
Lyapunov function for the closed-loop system and, on the
other hand, defines the terminal control law. We choose a
level set of the Lyapunov function as the common terminal
region:

Ωf :=
{
x ∈ Rnx | xTPx ≤ 1

}
. (11)

Hence, u = κf(x) = Kx with K = RP is a stabilizing
terminal controller for all system instances on Ωf. Note
that (11) describes an ellipsoid in the state space.

3.2 Constraint Satisfaction

In the following, we assume that the constraints can be
represented by polyhedral sets of the form

X =
{
x ∈ Rnx | cTi x ≤ ri, i = 1, . . . , NX

}
(12a)

U =
{
u ∈ Rnu | aTl u ≤ sl, l = 1, . . . , NU

}
, (12b)
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where NX , NU ∈ N denote the respective numbers of
inequalities by which the constraint sets are defined.

Satisfaction of state constraints translates to

Ωf ⊆ X (13a)

and since u = Kx ∈ U for all x ∈ Ωf, satisfaction of input
constraints translates to

KΩf ⊆ U . (13b)

These are general set conditions which, in general, are hard
to verify. In the case of closed convex sets, the support
function of the involved sets allows us to reformulate
conditions (13) as LMIs (Blanchini and Miani (2008);
Kolmanovsky and Gilbert (1998)). The support function
of an ellipsoidal set as defined by (11) is given by hΩf

(η) =√
ηTP−1η with η ∈ Rnx .

Given the two closed convex sets Ωf and X , checking the
state constraint condition (13a), Ωf ⊆ X , is equivalent to
checking if hΩf

(η) ≤ hX (η) holds for all η. In case that
X is a polyhedral set as defined in (12), checking Ωf ⊆ X
simplifies even further to verifying that hΩf

(ci) ≤ ri holds
for all i ∈ {1, . . . , NX }. Putting all this together, we arrive
at the equivalence

Ωf ⊆ X ⇔
√
cTi P

−1ci ≤ ri, ∀i ∈ {1, . . . , NX } .
The right hand expression can be reformulated by means
of the Schur complement into the set of LMIs given by[

Q (Qci)
(Qci)

T r2
i

]
≥ 0, ∀i ∈ {1, . . . , NX } , (14)

with Q = P−1. Hence, the state constraints are satisfied,
if a Q can be found that solves (14). Note that the Q in
(14) is the same as in (10).

The same procedure can be applied to transform the input
constraint condition (13b) into a set of LMIs. We get[

Q (RTal)
(RTal)

T s2
l

]
≥ 0, ∀l ∈ {1, . . . , NU} , (15)

with Q = P−1. Hence, the input constraints are satisfied
if a Q can be found that satisfies (15).

3.3 Optimization Problem

In order to find a common terminal region Ωf with associ-
ated terminal controller κf(x), we use (10), (14), and (15)
as constraints to an optimization problem whose objective
it is to maximize the common terminal region. This can
be achieved by maximizing log (det(Q)) (see Boyd (1994);
Boyd and Vandenberghe (2004)):

max
Q,R

log
(

det(Q)
)

s.t. Q = QT > 0[
Q (AjQ+BjR)

T

(AjQ+BjR) Q

]
≥ 0, ∀j ∈ {1, . . . , s}[

Q (Qci)
(Qci)

T r2
i

]
≥ 0, ∀i ∈ {1, . . . , NX }[

Q (RTal)
(RTal)

T s2
l

]
≥ 0, ∀l ∈ {1, . . . , NU} .

(16)

This optimization problem is a semidefinite program. It
can be efficiently solved, e.g. in MATLAB together with
the YALMIP toolbox.

We can now reformulate Theorem 7 for the linear case.

Theorem 8. (Linear multi-scenario MPC stability).
Suppose that Assumptions 1 and 2 are satisfied and that a
solution to (16) exists. Then, the origin is asymptotically
stable with a region of attraction ΩN for the system
x+ = Ajx+BjκN (x(k)) for all j ∈ {1, . . . , s}.

Proof. By construction, the solution to (16) yields the
matrix P that makes xTPx a common control Lyapunov
function and Ωf defined by (11) a common terminal region
for the uncertain linear discrete time system (8). Hence,
Assumptions 3, 5, and 6 are satisfied and Theorem 7
guarantees asymptotic stability of the origin of the closed
loop system x+ = Ajx+BjκN (x(k)) for all j ∈ {1, . . . , s}.

4. BUILDING CLIMATE CONTROL

We apply the MS-MPC approach (7) with the terminal
ingredients computed by (16) to building climate control,
which is a well-suited application for Model Predictive
Control, see e.g. Oldewurtel et al. (2012). Since MPC
is a control method that uses predictions to determine
a suitable input, weather predictions could be included
easily.

In our simulations, we use a model that is based on Bacher
and Madsen (2011). It can account for external influences,
such as ambient temperature and solar radiation. We
focus on the four-states version of the model, adapted to
resemble a cold storage house.

4.1 Model

The model equations, on the basis of Bacher and Madsen
(2011), are

Ṫs =
1

TsCs
(Ti − Ts) (17a)

Ṫi =
1

TsCi
(Ts − Ti) +

1

RihCi
(TCCU − Ti)

+
1

RieCi
(Te − Ti) +

1

RiaCi
(Ta − Ti) (17b)

ṪCCU =
1

RihCh
(Ti − TCCU) +

1

Ch
ΦCCU (17c)

Ṫe =
1

RieCe
(Ti − Te) +

1

ReaCe
(Ta − Te) , (17d)

where Ts, Ti, TCCU, and Te are the temperatures of the
sensor, the interior, the climate control unit (CCU), and
the building envelope (walls). The input to the system
is the CCU power ΦCCU. Moreover, the model underlies
external influences in the form of the ambient temperature
Ta. Values for the model parameters can be found in
Bacher and Madsen (2011).

We use this model for a cold storage house in which
e.g. food is stored, and we consider the uncertain case
of an open or closed door. This can be modeled as an
uncertainty in the parameter Ria ∈ {1.77, 5.31}. The
control task is to bring and keep the room temperature
down to 0 ◦C as close as possible, without going below
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Fig. 4. Simulation results for the nominal case. The room
temperature Ti violates the state constraints. The
control input Φh underlies high fluctuations and
switches between heating and cooling.

that freezing point, and without letting the stored goods
get warmer than 10 ◦C, i.e., the room temperature Ti is
constrained to [0, 10] ◦C. For the cooling or heating, the
climate control unit can provide a power ΦCCU in the range
of [−25, 25] kW. Positive and negative values correspond to
heating or cooling, respectively. Without loss of generality,
we assume a constant ambient temperature of 3 ◦C. The
various temperatures in the room (initial state) shall also
be 3 ◦C, to show that the controllers are able to perform a
set point change.

We compare a nominal MPC controller, which assumes
the nominal value Ria = 1.77 for the whole simulation
time, with a scenario-based MPC controller, which does
not make assumptions about the actual uncertainties. The
actual uncertainty realization is described by a randomly
generated sequence of the two parameter values of Ria,
i.e., the door is opened or closed randomly during the
simulation.

4.2 Implementation

The continuous model is discretized using Euler’s method
with a sampling time of ts = 18 s. The resulting dis-
crete time system is used in a Quadratically-Constrained
Quadratic Program (QCQP) which results from the reg-
ular linear MPC to QP reformulation, and the quadratic
terminal constraint.
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Fig. 5. Simulation results for the robust case. The room
temperature Ti stays above the freezing point of 0 ◦C.
The control input Φh varies only in a small range
and does not switch between heating and cooling.

Both the nominal and the multi-scenario MPC controller
use a prediction horizon of N = 20. The MS-MPC con-
troller furthermore uses a robust horizon of Nr = 3, after
which the scenario tree stops branching. In the considered
example, this value is a good compromise between con-
troller performance and computational burden. In general,
the determination of Nr is still an open question. For
details regarding the influence of Nr, see Lucia et al.
(2013).

Using (16), the matrix P defining the terminal region for
the considered case was computed to

P = 10−3 ·


7.40 −0.96 0.61 −0.03 −7.03
−0.96 17.37 −7.73 −1.88 −6.80

0.61 −7.73 22.60 4.15 −19.63
−0.03 −1.88 4.15 9.87 −12.11
−7.03 −6.80 −19.63 −12.11 103.33

 .

4.3 Simulation Results

Fig. 4a shows that the nominal MPC controller is not
robust, i.e., it violates the state constraints, whereas the
scenario-based MPC controller is feasible at all time steps
and does not violate the state constraints (see Fig. 5a) and,
hence, is robust. The “price” for the achieved robustness is
a slight reduction of the performance, as the average room
temperature will be above 0 ◦C.
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The control inputs, shown in Fig. 4b and Fig. 5b, show
equal behavior during the transition phase. Once the
constraint is reached, the nominal MPC controller starts
oscillating in magnitudes of up to 25 kW, whereas the
MS-MPC controller only varies in a range of about 5 kW,
resulting in less wear on the climate control unit.

Using MATLAB’s fmincon on a standard desktop PC,
the calculation times for solving the optimization problems
in the MPC schemes lie in the range of seconds. Thus, real-
time implementation of the MS-MPC controller is possible,
given the used sampling time of 18 s.

5. SUMMARY AND CONCLUSION

This work focuses on recursive feasibility and stability
of Multi-Scenario Model Predictive Control. We consider
the uncertain parameter case, assuming discrete uncer-
tainty realizations modeled as a scenario tree. In order
to establish recursive feasibility and stability, we extend
the classical dual mode approach of nominal MPC. This
leads to the formulation of a common control invariant
terminal region and a common terminal cost function for
the optimal control problem.

For the computation of these ingredients for the linear
case, we set up a semidefinite program accounting for the
invariance property and the rigorous satisfaction of input
and state constraints, given by closed and convex sets. We
apply this approach in a building climate control scenario.
The simulations show that the MS-MPC controller with
the computed terminal region fulfills the task without vio-
lating the constraints, whereas a standard MPC controller
violates the state constraints at several points.

Future works could investigate the computation of a ter-
minal region and terminal cost function for certain classes
of nonlinear systems, e.g. systems with sector-bounded
nonlinearities. To extend the work on time-independent
parameter uncertainties, further research could also ex-
plore the case of uncertain additive disturbances.
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F. (2009). Robust output feedback model predictive
control of constrained linear systems: Time varying case.
Automatica, 45(9), 2082–2087.

Mayne, D.Q., Rawlings, J., Rao, C., and Scokaert, P.
(2000). Constrained model predictive control: Stability
and optimality. Automatica, 36(6), 789–814.

Mayne, D.Q. (2014). Model predictive control: Recent
developments and future promise. Automatica, 50(12),
2967–2986.

Oldewurtel, F., Parisio, A., Jones, C.N., Gyalistras, D.,
Gwerder, M., Stauch, V., Lehmann, B., and Morari, M.
(2012). Use of model predictive control and weather
forecasts for energy efficient building climate control.
Energy and Buildings, 45, 15–27.

Qin, S. and Badgwell, T.A. (2003). A survey of industrial
model predictive control technology. Control Engineer-
ing Practice, 11(7), 733–764.

Rawlings, J.B. and Mayne, D.Q. (2009). Model Predictive
Control: Theory and Design. Nob Hill Publishing,
Madison.
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