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Abstract: In this note we address the problems of obtaining guaranteed and as good as
possible estimates of system parameters for linear discrete–time systems subject to bounded
disturbances. Some existing results relevant for the set–membership parameter identification
and outer–bounding are first reviewed. Then, a novel method for characterizing the consistent
parameter set based on homothety is offered; the proposed method allows for the utilization
of general compact and convex sets for outer–bounding. Based on these results, we consider
the one–step input design and identifiability problems in set–membership setting. We provide
a guaranteed approach for the one–step input design problem, by selecting optimal inputs for
the purpose of parameter estimation. As optimality criterion, the dimension and the outer–
bounding volume of the “anticipated” consistent parameter set is considered. We furthermore
derive a sufficient criterion for (one–step) parameter identifiability, i.e. when a point estimate
for a parameter can be guaranteed for all possible measurements.
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1. INTRODUCTION

Obtaining or refining a mathematical model of a dynamic
process being able to reproduce available empirical data is
an ubiquitous problem and a mandatory step for purposes
such as prediction, analysis, or control synthesis. Very
frequently however, models’ parameters cannot be deter-
mined directly and have to be estimated from typically
uncertain (time–series) data, while it is important to in-
vestigate the influence of this uncertainty on the parameter
estimates.
A common assumption made for the uncertainty is that the
data is affected by an additive random noise (Walter and
Piet-Lahanier [1990], Milanese and Vicino [1991]), char-
acterized by a known probability density function (pdf),
e.g. the normal distribution (white noise). The parame-
ter estimation problem is then considered in a statisti-
cal framework, where various techniques exist to derive
an (optimal and unbiased) estimator, e.g. least squares
minimization or maximum likelihood. The quality of the
corresponding estimates is usually assessed by utilizing the
Fisher information matrix (e.g. Ljung [1998]). In many
situations, however, the probability density assumption
might be questionable (Milanese and Vicino [1991]), e.g.
because not enough data is available (Walter and Piet-
Lahanier [1990]) or the nature of the uncertainty is du-
bitable.
An alternative approach, known as a set–membership or
bounded error description, is to assume uncertainty to be
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only bounded, but otherwise unknown. Advantageously,
this approach allows to derive the set of consistent parame-
ters, rather then an isolated estimator, guaranteed to con-
tain all possible consistent solutions. This approach was
initiated by Witsenhausen [1968] and Schweppe [1968] in
the domain of state estimation, and employed for param-
eter estimation of linear (output) systems (see e.g. Walter
and Piet-Lahanier [1990], Milanese and Vicino [1991], Bai
et al. [1999] and the references therein). The bounded error
description has also been applied to general estimation
problems of dynamic nonlinear systems, for example in re-
gression form (Milanese and Novara [2004]), using interval
analysis (see Jaulin et al. [2001] and references therein),
or employing a relaxation based approach (e.g. Borchers
et al. [2009]). For linear systems, as considered in this
note, the consistent parameter set is polytopic, and might
be very complicated. This is why many existing methods
address aim to determine simple–shaped sets which are
guaranteed to contain the set of consistent parameters.
For this purpose, ellipsoids have been considered, e.g.
in Schweppe [1968, 1973] and Fogel and Huang [1982],
as well as orthotopes (Milanese and Belforte [1982]) and
more general forms of simple shaped polytopes such as
zonotopes (Mo and Norton [1990]).

In this contribution, we consider problems related to pa-
rameter estimation for linear, discrete time systems, in
membership setting. Particularly, we first address the pa-
rameter identification and estimation problem, deriving
the set of consistent parameters and its outer–bounds
respectively. To this end, we describe the exact consistent
parameter set recursively for a given and possibly dis-
turbed control–state sequence, following the ideas of set–



dynamics employed in Artstein and Raković [2008, 2011]
for control synthesis, analysis, and set invariance pur-
poses. Then, we review classic orthotopic outer–bounding
and provide a complementary approach using homothety
(Raković and Fiacchini [2008]) to outer–bound the con-
sistent parameter set by general compact and convex sets
of prescribed complexity. Second, we consider the input
design problem in set–membership setting; we propose an
approach which allows for the selection of optimal inputs
that are guaranteed to lead to a minimal volume (and least
dimensional) consistent parameter set (one–step), under
worst case measurement consideration. We finally relate
the results to parameter identifiability question, and state
a sufficient criterion when one or more model parameters
can be identified exactly (in one–step), i.e. when point
estimates are obtainable. The proposed methods are il-
lustrated by two examples.

Paper Structure Section 2 presents necessary preliminar-
ies. In Section 3, we present the description of the exact
consistent parameter sets, and discuss outer–bounding ap-
proaches using orthotopic and homothetic sets. In Section
4, we apply and extend the obtained results to one–step
input design problem and parameter identifiability in a
particular case. Section 5 provides a summary and discus-
sion.

Basic Nomenclature The sets of non–negative, positive
integers and non–negative real numbers are denoted, re-
spectively, by N,N+,R+. We furthermore denote the in-
teger sequence N[a:b] := {a, a + 1, . . . , b} with a ∈ N, b ∈
N, a < b. For a set X ⊂ Rn and a vector y ∈ Rn, the
Minkovski addition is defined by y⊕X := {y+x : x ∈ X}.
All sets considered in the remainder are compact and con-
vex sets (unless otherwise stated). The collection of non–
empty compact sets in Rn is denoted by Com(Rn). Proofs
for some of the propositions are given in the appendix.

2. PRELIMINARIES AND PROBLEMS STATEMENT

In this paper, we consider linear systems of the form:

xk+1 = A(λ)xk +B(λ)uk + wk, (1)

where xk ∈ Rnx , uk ∈ Rnu and wk ∈ Rnx are the current
state, control and the unknown disturbance respectively,
xk+1 is the successor state and λ ∈ Rnλ the system
parameters. The system structure is known, the matrices
A(λ), B(λ) are given by:

A(λ) =

nλ∑
i=1

Aiλi, B(λ) =

nλ∑
i=1

Biλi, (2)

where λ = (λ1, λ2, . . . , λnλ), and for all i ∈ {1, 2, . . . , nλ},
the matrix pairs (Ai, Bi) are known and are of compatible
dimension (i.e. (Ai, Bi) ∈ Rnx×nx × Rnx×nu).
The prime concern of this note is to obtain guaranteed
and as good as possible estimates of system parameters,
which are unknown at the beginning of the process. The
intricate case when no data is given, but an experiment is
to be designed, is treated later. For parameter estimation
we are given state and control measurements/sequences,
possibly affected by a bounded disturbance.
We denote the bounding sets of the parameters and
disturbance by Λ and W , and assume for simplicity that
both sets are polytopic (compact and convex) sets in Rnλ
and Rnx respectively,

Λ : = {λ ∈ Rnλ : M0λ ≤ l0, Me
0λ = le0}, (3)

W : = {w ∈ Rnx : Mww ≤ lw}, (4)

with known matrix–vector pairs (M0, l0) ∈ Rri×nλ × Rri ,
(Me

0 , l
e
0) ∈ Rre×nλ × Rre and (Mw, lw) ∈ Rrw×nλ × Rrw .

Interpretation 1. (Parameter Estimation). At the begin-
ning of the process, the parameters λ are not known apart
from being bounded, though do not change throughout the
process. In contrast, the disturbances wk ∈ W can take
different values throughout the process, known only to be
bounded, and are hence not considered for estimation.

For simplicity, we consider in the remainder all states to be
measured; the more general case can be found in Borchers
et al. [2009], Rumschinski et al. [2010]. The available
data consists of (disturbed) state and control sequences
for consecutive k ∈ {1, 2, . . . , N} time steps, i.e. {xk}Nk=0

and {uk}N−1k=0 , where the state sequence is affected by
unknown disturbances wk ∈W . The considered parameter
estimation problem takes the following form:

Problem 2. (Parameter Identification). Estimate the set
ΘN ⊆ Λ of parameters that is consistent with the given
data {xk}Nk=0, {uk}N−1k=0 , W , i.e. estimate the consistent
parameter set

ΘN := {λ ∈ Λ : ∀k ∈ N[0:N−1], (5)

xk+1 = A(λ)xk +B(λ)uk + wk,

wk ∈W}.
Since the consistent parameter set might take complicated
forms with increased number of measurements, we are
interested in outer–bounding ΘN by general polytopic
shapes. Having in mind the trade–off between efficiency
and precision, simple or more complicated basic shapes can
be utilized. To this end, we consider families of homothetic
sets (Raković and Fiacchini [2008]), defined as follows:

Definition 3. Sets X ⊂ Rn and Y ⊂ Rn are called
(positively) homothetic if X = z ⊕ αY for some z ∈ Rn
and α ∈ R+.

For ease of notation, we denote for any state/control pair
(xk, uk) ∈ Rnx × Rnu and for any i ∈ {1, 2, . . . , nλ},

yi(xk, uk) = Aixk +Biuk, (6)

Y (xk, uk) := (y1(xk, uk) y2(xk, uk) . . . ynλ(xk, uk)),

where yi(xk, uk) ∈ Rnx and Y (xk, uk) ∈ Rnx×nλ . Notice
that, under the construction above, for any given (xk, uk),
Y (xk, uk)λ = A(λ)xk +B(λ)uk.
With the preparations above, we can now turn our atten-
tion to the parameter identification and outer–bounding
problem.

3. PARAMETER ESTIMATION

In this section, we consider the exact identification, and
then outer–bounding of the consistent parameter sets,
often required for a practicable analysis or synthesis prob-
lems.

3.1 Exact Characterization

Recall that the model parameter λ are known only to the
extend that λ ∈ Λ and that they do not change over
time (i.e. the values of λ are equal to its values at the
beginning of the process). However, the disturbances wk
are not known and it can take, at any point in time, any



arbitrary value in the set W . Following the set–dynamics
ideas presented in Artstein and Raković [2008, 2011], we
have:

Proposition 4. The dynamic of the consistent parameter
set (5) is described by

Θk+1 = F (Θk, xk+1, xk, uk), (7)

where the map F (·, ·, ·, ·) : Com(Rnλ) × Rnx × Rnx ×
Rnu → Rnλ is given by:

F (Θk, xk+1, xk, uk) = {λ ∈ Θk : xk+1 − Y (xk, uk)λ ∈W}.
(8)

Hence, parameter identification reduces to the determina-
tion of the sequence {Θk}Nk=1 of consistent parameter sets,
for the given initial parameter set Θ0 = Λ, and the state
{xk}Nk=0 and control {uk}N−1k=0 sequences.
In the considered linear–polytopic setting, the computa-
tion of the sequence {Θk}Nk=1 simplifies as stated by:

Proposition 5. The consistent parameter sets Θk, k ∈
{1, 2, . . . , N} is given by:

Θk = {λ ∈ Λ : Mkλ ≤ lk}, (9)

where Λ and (M0, l0) as in (3), and for all j ∈ {1, 2, . . . , k}:

Mj =

(
Mj−1

−MwY (xj−1, uj−1)

)
, lj =

(
lj−1

lw −Mwxj

)
, (10)

Importantly, in the parameter estimation case, usually
only very few inequalities of (9) contribute to the bound-
ary of the consistent parameter set. Redundant constraints
can be detected and dropped, e.g. following Mattheiss
[1973], to obtain a minimal representation of the consis-
tent parameter set. This improves computational efficiency
when computation of outer–bounds is performed.

3.2 Outer–bounding

For the considered system class, the consistent parameter
sets Θk, k ∈ {1, . . . , N} (9) are convex polytopes, see
Prop. 5, which may become fairly complex if N is large.
This is why many existing methods aim at determining
a simple–shaped set S containing the set Θk. For this
purpose, ellipsoids have been considered, e.g. Schweppe
[1968, 1973], Fogel and Huang [1982], as well as orthotopes
(Milanese and Belforte [1982]), and more general forms of
simple shaped polytopes (Mo and Norton [1990]). We next
review orthotopic outer–bounding for the present case, and
afterward provide a novel outer–bounding approach based
on homothety.

Orthotopic Outer–Bounding In practice, one is often in-
terested in the uncertainty interval associated with each
parameter λi, i.e. to bound the consistent parameter sets
Θk by the orthotope aligned with the coordinate axes. The
lower and upper bound which define the (compact) uncer-
tainty interval of the i–th parameter, are obviously given
by the values of the minimum and maximum criterion as
follows:

Oi(Θk) = {[λi, λi], i ∈ N[1:nλ]}, (11)

with λi = min
λ
{λi}, λi = max

λ
{λi}

s.t. λ ∈ Θk.

The length of the (inner and outer) bounding interval of a
parameter λi ∈ Θk is denoted by

`ki = λi − λi. (12)

We define the bounding orthotope as the Cartesian prod-
uct of all nλ bounding intervals, i.e.

O(Θk) :=

nλ∏
i=1

Oi(Θk).

By definition, O(Θk) is Lebesgue measurable (see e.g.
Schneider [1993]), and its volume takes the form:

V ol (O(Θk)) :=

nλ∏
i=1

`ki , (13)

where V ol(·) : Com(Rn)→ R+ is the volume map.
In (11), the computation of the collection of uncertainty
intervals however requires the solution of 2nλ linear pro-
grams (e.g. using the simplex method (see e.g. Boyd and
Vandenberghe [2004]). Alternatively, the bound collection
can also be obtained via a single (though larger) concave
program, required later on for experimental design, as
follows:

Proposition 6. The collection of bounds of Θk and respec-
tive volume are obtained by:

λ∗ = arg max
λ,λ
{
i=nλ∏
i=1

(λ
(i)

i − λ
(i)
i )} (14)

s.t. ∀i ∈ N[1:nλ], λ
(i)

i ≥ λ
(i)
i , λ

(i) ∈ Θk, λ
(i) ∈ Θk,

where λ∗ = (λ∗, λ
∗
) is the collection of bounds.

The volume V ol (O(Θk)) is simply obtained by replacing
“argument” with “max” in (14). Proof immediately follows
by construction.

Remark 7. Notice that 2nλ (independent) parametriza-

tion’s are introduced, denoted by λ(i) and λ
(i)

for i ∈
{1, 2, . . . , nλ}. Note that problem (21) can be formulated
as determinant maximization problem, which is a concave
problem (see e.g. Boyd and Vandenberghe [2004]).

Remark 8. Whenever V ol (O(Θk)) = ∅, Θk = ∅, thus
providing fact that the model (1) is invalid (inconsistent
with the measurements).

Homothety A complementing alternative to fixed–shape
bounding approaches is to employ homothety (Raković
and Fiacchini [2008]), which provides the flexibility to
consider general compact and convex shapes for outer–
bounding of the sets Θk.
To this end, consider the family of homothetic sets:

S(S) = {s⊕ αS, s ∈ Rnλ , α ∈ R+}. (15)

Here s ∈ Rnλ is an orientation vector, and α ∈ R+ a scalar
representing the width of the set S. The set S ⊆ Rnλ
is designed off–line, and can in principle be an arbitrary
non–empty compact, convex set. The choice of the basic
shape S however might depend on a particular application
or on some quality criterion; for example, computational
efficiency obliges simple basic shapes, e.g. orthotopes,
whereas accuracy, i.e. advantageous relation of inner and
outer approximation, typically requires more complex ba-
sic shapes.
Here, we focus on an outer–bounding map OS(·) :
Com(Rnλ)→ S given by:

OS(X) := arg inf
S
{h(X,S) : S ∈ S and X ⊆ S},

where h(·, ·) : Com(Rn)×S → R is a selection criterion for
the homothetic outer bound, e.g. the scaling factor. Then,



the homothetic outer–bound of the consistent parameter
set Θk is given by OS(Θk).
Exemplary, we provide the homothetic outer–bounding for
the general case when the basic shape is a irreducible
polytopic set S = {s : Css ≤ ds} (Cs ∈ Rns×nλ , ds ∈ Rns),
for Θk (9):

(sk, αk) = arg min
s,α
{α2} (16)

s.t.

(
Cs ds
−Cs −ds

)
·
(
s
α

)
≤
(
Css0 + dsα0

−c

)
,

where (s0, α0) defines the initial basic shape, and with
c = (c1, c2, . . . , cns)

T given by

cj = max
λ
{Cs(j)λ}

s.t. λ ∈ Θk,

with Cs(j) denoting the j−th row of Cs.

Remark 9. Note that by construction it holds that Θk+1 ⊆
Θk, hence OS(Θk+1) ⊆ OS(Θk), and therefore αk+1 ≤ αk,
i.e. the scaling factor sequence {αk}Nk=0 is monotonically
non–increasing.

Illustrative Example 1

As example we consider the following uncertain linear
system

xk+1 =

(
λ1 λ2
λ3 λ4

)
xk +

(
λ5
λ6

)
uk + wk (17)

with nx = 2, nu = 1, and nw = 2. The disturbances wk =
(w1,k, w2,k)T are bounded, 0 ≤ w1,k ≤ 0.2, 0 ≤ w2,k ≤ 0.2,
and the six parameters are unknown to the extend

Λ = Θ0 = {λ ∈ R6 : ∀i ∈ N[1:6], 0 ≤ λi ≤ 1}.
We generate artificial measurements (N = 30) using the
reference parametrization λ∗ = (0.1, 0.2, 0.1, 0.3, 0.2, 0.1)T .
We consider two experiments with same initials x0 =
(0, 0)T , same input sequence u0 = 1, {uk ∼ {0, 1}}291 .
Two different realizations are obtained by considering two

independent random disturbance sets {w(i)
i,k ∼ [0, 0.2]}291 ,

i = {1, 2}, by which two sequences {x(i)k }30k=0, i = {1, 2}
are computed.
For this two measurement sequences, we estimate the
dynamics of bounding intervals for the six parameters ac-
cording to Prop. 6. The results are depicted in Fig. 1. The
example demonstrates that although parameters intervals
can be narrowed, the estimates quality strongly depends
on the actual disturbances.
To obtain homothetic outer–bound OS(Θk), we choose as
basic shape a simple cube, e.g.

S = {s ∈ R6 : ∀i ∈ N[1:6], 0 ≤ si ≤ 1}, s0 = 0 ∈ R6, α0 = 1.

Fig. 2 shows respectively the evolution of the homothetic
scaling factor αk, estimated according (16), for both data
sets. For the considered basic shape, αk can be interpreted
as the maximum length of the uncertainty intervals, i.e.
αk = maxi∈N[1:6]

`ki , compare Fig. 1.

4. ONE–STEP EXPERIMENTAL DESIGN AND
IDENTIFIABILITY

As a second task in this paper, we consider an experi-
mental design problem related to parameter estimation
in the set–membership setting. Particularly, we aim to
design inputs which are guaranteed to lead to a minimal

Fig. 1. Orthotopic outer bounding. Evolution of the
bounding intervals Oi(Θk) for two realizations of the
same experiment, shown in different colors. Reference
values are indicated by the black lines.

Fig. 2. Homothetic outer bounding. Evolution of the
scaling factor α for the unit cube as basic shape.

volume consistent parameter set, ideally to a point esti-
mate. Obviously, this problem is much more challenging
then parameter estimation, since, apart that the unknown
system parameters are bounded (λ ∈ Λ), little further
information is available. The actual measurements are not
known and can take any feasible value. However, we can
exploit the information that the measurement will be a
singleton (z = xk+1 ∈ Rnx).

While in general it is of course desired to design experi-
ments for several future time steps, i.e. to design an op-
timal input trajectory/sequence, we restrict ourselves for
simplicity to a single future time instance in the remainder
of this note. This is basically because the single step
approach can be handled using geometric programming
(see e.g. Boyd and Vandenberghe [2004]) as shown later,
whereas the multi–step case is more intricate due to bi-
linear terms, which requires solving polynomial programs
(e.g. via a relaxation–based approach as in Borchers et al.
[2009]), which is thereby out of the scope of this note and
subject of further research.

We treat the disturbance case later, and consider for now
the disturbance–free system as in (1) with fixed initial
state x0 ∈ Rnx and unknown parameters λ ∈ Λ. Controls
of the domain U = {u : u ∈ Rnu} can be applied.

Problem 10. (One–step Input Design). Design an input
u∗ ∈ U which leads to a minimal consistent parameter
set for the worst possible measurement z∗ ∈ Rnx , i.e. find

u∗ = arg min
u

max
z
{V ol (Θ1)}, (18)

where V ol(·) : Com(Rn)→ R+, and Θ1 = F (Λ, z, x0, u),



Θ1 = {λ ∈ Λ : (19)

z = A(λ)x0 +B(λ)u,

u ∈ U, z ∈ Rnx}.

Notice that, in contrast to (one–step) parameter estima-
tion, z is not known and can take any admissible value in
Rnx (for non–admissible values we have V ol (Θ1) = ∅).
Problem (18)–(19) is in general hard to solve, and to
obtain the desired guaranteed results we propose the
following two relaxations. First, determining the exact
volume of polytopic sets is very difficult for the general
case nλ ≥ 3. Therefore, we consider, for the general case,
the volume of the bounding orthotope V ol (O(Θ1)) (13)
instead, although guaranties can be still provided. Second,
we consider the case when the control set has a discrete
domain, e.g. Ud = {uj ∈ Rnu , j ∈ {1, 2, . . . , nd}}.
With this simplifications, input design problem (18)–(19)
consists now in selecting an input u∗ ∈ Ud which minimizes
the volume of O(Θ1) for the worst possible measurement
z∗ ∈ Rnx , i.e.

u∗ = arg min
u∈Ud

{V ol (O(Θ1))
∗}, (20)

with V ol(·) : Com(Rnλ) → R+ as in (13), and Θ1 =
F (Λ, z, x0, uj)

V ol (O(Θ1))
∗

= max
z,λ,λ
{
i=nλ∏
i=1

(λ
(i)

i − λ
(i)
i )} (21)

s.t. ∀i ∈ N[1:nλ],

λ
(i)

i ≥ λ
(i)
i , λ

(i) ∈ Λ, λ(i) ∈ Λ,

z = A(λ
(i)

)x0 +B(λ
(i)

)uj ,

z = A(λ(i))x0 +B(λ(i))uj ,

z ∈ Rnx .
Analogously to (14), 2nλ independent parametrization’s
are introduced, and problem (21) is log–max concave.
The proposed selection approach (20) hence requires solv-
ing nd programs (21), summarized by:

Proposition 11. (One–step Input Selection). The input
u∗ (20) minimizes the volume of the outer–bounded con-
sistent parameter set O(Θ1) (21), for all possible instances
of z and every u ∈ Ud.
Remark 12. Note that for the trivial case nλ = 1,
V ol(O(λ))∗ = V ol(λ)∗, i.e. the input design problem is
solved exactly. Also for the case nλ = 2, where the con-
sistent parameter set is an area whose measure can be ex-
plicitly described using vertex enumeration (e.g. following
Avis and Fukuda [1992]), outer–bounding is not required.

Remark 13. The input selection approach directly extends
to the initial condition selection problem, by treating
initial conditions as inputs (see Ex. 2).

Furthermore, an important conclusion can be drawn from
the case V ol (O(Θ1))

∗
= 0 by (21). Then, by construction,

at least one bounding interval is a singleton set, and
hence a point estimate can be guaranteed for at least
one parameter for all possible measurements z, i.e. one or
more parameters are identifiable. By construction, those
parameters are distinguished as follows:

Proposition 14. (One–step Identifiability). Given an dis-
turbance free system (1), with unknown parameters λ ∈ Λ,

known initial condition x0 ∈ Rnx , and an input uj ∈ Ud.
If `1i = 0, with

`1i = max
z,λ,λ

{(λi − λi)} (22)

s.t. λi ≥ λi, λ ∈ Λ, λ ∈ Λ,

z = A(λ)x0 +B(λ)uj ,

z = A(λ)x0 +B(λ)uj ,

z ∈ Rnx ,
then λi is identifiable in one step by input uj .

As a consequence, the input design problem necessitates
a prior optimality criterion, e.g. the Hausdorff dimension
(see e.g. Mattila [1999]) ofO(Θ1), preferring inputs leading
to point estimates, refer Ex. 2. To this end, the objective
of (21) can be tailored to

V ol (O(Θ1))
∗

= max
z,λ,λ

{
i=nλ∏
i=1,i6=k

(λ
(i)

i − λ
(i)
i )}

to remove identifiable parameter(s) λk, to proceed with the
optimal input selection problem (20), where now V ol(·) :
Rn → R+ with n ≤ nλ.

Extension to the Robust Case The experimental design
problem (20)–(21) is based on the assumption that systems
states are not perturbed. The extension to the robust case
is found by

u∗ = arg min
u∈Ud

{V ol (O(Θ1))
∗}, (23)

with Θ1 = F (Λ, z, x0, uj), and

V ol (O(Θ1))
∗

= max
z,λ,λ

{
i=nλ∏
i=1

(λ
(i)

i − λ
(i)
i )} (24)

s.t. ∀i ∈ N[1:nλ],

λ
(i)

i ≥ λ
(i)
i , λ

(i) ∈ Λ, λ(i) ∈ Λ,

−MwY (x0, uj)λ
(i) ≤ lw −Mwz,

−MwY (x0, uj)λ
(i) ≤ lw −Mwz,

z ∈ Rnx .
Note that (24) can be formulated as (concave) determinant
maximization problem.

Illustrative Example 2

We consider the simple linear system

x1 =

(
λ1 λ2

λ1 + λ2 0

)
u,

where u ∈ R2 denote the input vector, z = x1 ∈ R2 the
unknown (future) state, and

Λ = {(λ1, λ2) ∈ R2 : 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1}
defining the initial parameter set. We aim designing inputs
leading to a volume–minimal parameter set. For this, we
consider four inputs as possible choices, see Tab. 1. Using
Prop. 11 and Prop. 14, we obtain the following results:
For u = (0, 0)T and u = (1, 1)T , the parameter bounds
cannot be improved.
For u = (0, 1)T , we have `12 = 0, hence by Prop. 14 λ2 can
be identified exactly; the parameter λ1 however can not
be improved (as `11 = 1).
Finally, for u = (1, 0)T both parameters can be identified
exactly as `11 = `12 = 0. Hence u = (1, 0)T is selected as
optimal control input.



Table 1. Anticipated volume V ol(O(Θ1)) and
bounding intervals `11, `

1
2 for the considered

experiments.

experiment volume bounding intervals
# u1 u2 V ol(O(Θ1)) `11 `12
1 0 0 1 1 1
2 0 1 0 1 0
3 1 0 0 0 0
4 1 1 1 1 1

5. SUMMARY AND DISCUSSION

In this note, we addressed the set–membership approach
for parameter estimation and input design considering
linear systems given in state space notion that are subject
to bounded disturbances. A main advantage of the set–
membership approach is that a set of consistent estimates
can be derived, guaranteed to contain all possible solutions.
For the considered system class, we used set–dynamics to
provide a recursive description of the exact parameter sets
Θk, consistent with a given state/control sequence and
possibly affected by bounded disturbances. To characterize
the consistent parameter sets, which may become fairly
complicated if N is large, we proposed to employ simple–
shaped sets containing Θk. Particularly, we suggested a
novel approach using homothety and families of shape–
preserving sets of prescribed complexity. This in turn al-
lows for a trade–off between efficiency and precision, using
simple or more complicated basic shapes. The homothetic
approach thus complements and generalizes the idea of
using fixed shapes such as orthotopes or ellipsoids for
outer–bounding purposes.
We furthermore considered input design problem in set–
membership setting. We provided a guaranteed approach
for the one–step input design problem (20)–(21) by se-
lecting optimal inputs for the purpose of parameter esti-
mation. As optimality criterion, the dimension and the
outer–bounding volume of the “anticipated” consistent
parameter set is considered. We furthermore derived a
sufficient criterion for (one–step) parameter identifiabil-
ity, i.e. when a point estimate for a parameter can be
guaranteed for all possible measurements z. Although the
results presented are limited to one step, they represent
a sensible step toward a more comprehensive and general
framework for design problems in set–membership setting.
Future research will address generalization to multi–step
and general input–output systems, e.g. using a relaxation
based approach Borchers et al. [2009].
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APPENDIX
Proof of Prop.4:
Proof. Let Θk, xk+1, xk, uk be given. By (7)–(8), we have
Θk+1 = F (Θk, xk+1, xk, uk) with

F (Θk, xk+1, xk, uk) = {λ ∈ Θ : xk+1 − Y (xk, uk)λ ∈W}
= {λ ∈ Θk : xk+1 − Y (xk, uk)λ = wk, wk ∈W}
= {λ ∈ Θk : xk+1 = A(λ)xk +B(λ)uk + wk, wk ∈W}.

Since Θ0 := Λ, it follows that Θk+1 = F (Θk, xk+1, xk, uk)
generates the desired sequence {Θk}Nk=1 of the consistent
parameter sets. �
Proof of Prop.5:
Proof. Pick a j ∈ {0, 1, . . . , j, . . . , N−1} and assume that
Θj = {λ ∈ Λ : Mjλ ≤ lj}. Then, by Prop. 4,

Θj+1 = F (Θj , xj+1, xj , uj)

= {λ ∈ Θj : xj+1 −A(λ)xj −B(λ)uj ∈W}.
Hence, from the description of W (3) and Θj , we have:

Θj+1 = {λ ∈ Θj : Mj+1λ ≤ lj+1}
with Mj+1, lj+1 as in (10). Since Θ0 := Λ, the claim follows
by induction. �


