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State and Output Feedback Nonlinear Model Predictive Control:

An Overview

Rolf Findeisen', Lars Imsland?, Frank Allgéwer!’, Bjarne A. Foss*

"nstitute for Systems Theory in Engineering, University of Stuttgart, 70550 Stuttgart, Germany; “Department of Engineering
Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway

The purpose of this paper is twofold. In the first part,
we give a review on the current state of nonlinear model
predictive control (NMPC). After a brief presentation
of the basic principle of predictive control we outline
some of the theoretical, computational, and implemen-
tational aspects of this control strategy. Most of the
theoretical developments in the area of NMPC are
based on the assumption that the full state is available
for measurement, an assumption that does not hold in
the typical practical case. Thus, in the second part of
this paper we focus on the output feedback problem in
NMPC. After a brief overview on existing output
feedback NMPC approaches we derive conditions that
guarantee stability of the closed-loop if an NM PC state
feedback controller is used together with a full state
observer for the recovery of the system state.
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1. Introduction

In many control problems it is desired to design a
stabilizing feedback such that a performance criterion
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is minimized while satisfying constraints on the con-
trols and the states. Ideally one would look for a
closed solution for the feedback law satisfying the
constraints while optimizing the performance. How-
ever, typically the optimal feedback law cannot be
found analytically, even in the unconstrained case,
since it involves the solution of the corresponding
Hamilton—Jacobi—Bellman partial differential equa-
tions. One approach to circumvent this problem is the
repeated solution of an open-loop optimal control
problem for a given state. The first part of the
resulting open-loop input signal is implemented and
the whole process is repeated (see Section 2). Control
approaches using this strategy are referred to as model
predictive control (MPC), moving horizon control or
receding horizon control.

In general one distinguishes between linear and
nonlinear model predictive control (NMPC). Linear
MPC refers to a family of MPC schemes in which
linear models are used to predict the system dynamics
and considers linear constraints on the states and
inputs and a quadratic cost function. Even if the
system is linear, the closed-loop dynamics are in gen-
eral nonlinear due to the presence of constraints.
NMPC refers to MPC schemes that are based on
nonlinear models and/or consider non-quadratic cost-
functionals and general nonlinear constraints on the
states and inputs.
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Since its first invention in the 70s of the last century,
linear MPC has crystallized as one of the key
advanced control strategies. By now linear MPC, is
widely used in industrial applications especially in the
process industry, see for example [38,39,73,77,78]. The
practical success is mainly based on the possibility to
take constraints on the states and inputs systematically
into account while operating the process optimally.

Overview on industrial linear MPC techniques can
be found in [77] and [78]. In [78], more than 4500
applications spanning a wide range from chemicals to
aerospace industries are reported. By now, linear MPC
theory can be considered as quite mature. Important
issues such as online computation, the interplay
between modeling/identification and control and
system theoretic issues like stability are well addressed
[53,73].

Many systems are, however, inherently nonlinear.
Higher product quality specifications and increasing
productivity demands, tighter environmental regula-
tions and demanding economical considerations
require to operate systems over a wide range of oper-
ating conditions and often near the boundary of the
admissible region. Under these conditions linear
models are often not sufficient to describe the process
dynamics adequately and nonlinear models must be
used. This inadequacy of linear models is one of the
motivations for the increasing interest in NMPC
control.

The purpose of this paper is twofold. In the first
part we provide a review on the current state of NMPC.
After a presentation of the basic principle of predictive
control we present some of the key theoretical, com-
putational and implementational aspects of this con-
trol strategy. We furthermore discuss the inherent
advantages and disadvantages of NMPC. Note that
this part is not intended to provided a complete review
of existing NMPC approaches. For example we
mainly focus on NMPC for continuous time systems
using sampled measurement information and do not
go into details on discrete time NMPC strategies. For
more self contained reviews on NMPC we refer to
[3,17,22,69,80].

In the second part of the paper the output feedback
problem for NMPC is considered. One of the key
obstacles of NMPC is that it is inherently a state
feedback control scheme using the current state and
system model for prediction. Thus, for an application
of predictive control in general the full state infor-
mation is necessary and must be reconstructed from
the available state information. However, even if the
state feedback NMPC controller and the observer
used for the state reconstruction are both stable, there
is no guarantee that the overall closed-loop is stable
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with a reasonable region of attraction, since no gen-
eral separation principle for nonlinear systems exists.
After a review of existing solutions of the output
feedback NMPC problem in Section 3.1 we present in
Sections 3.2-3.4 an unifying approach for output
feedback NMPC that is based on separation ideas.
In the following, || - || denotes the Euclidean vector
norm in R"” (where the dimension n follows from
context) or the associated induced matrix norm.
Vectors are denoted by boldface symbols. Whenever
a semicolon “;” occurs in a function argument, the
following symbols should be viewed as additional
parameters, i.e. f(x;y) means the value of the function

fat x with the parameter .

2. State Feedback NMPC

In this section, we provide an up to date overview on
the area of state feedback NMPC. Note, however, that
we limit the discussion to NMPC for continuous time
systems using sampled measurement information. We
briefly refer to this as sampled-data NMPC. We do
not go into details on NMPC for discrete time sys-
tems. However, most of the outlined approaches
have dual discrete time counterparts, see for example
[3,22,69,80,81].

2.1. The Principle of Predictive Control

Model predictive control is formulated as the repeated
solution of a (finite) horizon open-loop optimal control
problem subject to system dynamics and input and
state constraints. Fig. 1 depicts the basic idea behind
MPC control. Based on measurements obtained at
time ¢, the controller predicts the dynamic behavior of
the system over a prediction horizon T, in the future

past | future/prediction
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closed-loop .
state x -~ open loop input i

~
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~

closed-loop - -
input u

Il
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Fig. 1. Principle of MPC.
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and determines (over a control horizon 7,.<7T,) the
input such that a predetermined open-loop perfor-
mance objective is minimized. If there were no dis-
turbances and no model-plant mismatch, and if the
optimization problem could be solved over an infinite
horizon, then the input signal found at t=0 could be
open-loop applied to the system for all > 0. However,
due to disturbances, model-plant mismatch, and the
finite prediction horizon the actual system behavior is
different from the predicted one. To incorporate
feedback, the optimal open-loop input is implemented
only until the next sampling instant. In principle the
time between each new optimization, the sampling
time, can vary. We assume for simplicity of presenta-
tion, that it is fixed, i.e the optimal control problem
is re-evaluated after the constant sampling time 0.
Using the new system state at time ¢+ 6, the whole
procedure — prediction and optimization — is repe-
ated, moving the control and prediction horizon
forward.

In Fig. 1, the open-loop optimal input is depicted as
a continuous function of time. To allow a numerical
solution of the open-loop optimal control problem the
input is often parametrized by a finite number of
“basis” functions, leading to a finite dimensional
optimization problem. In practice, often a piecewise
constant input is used, leading to 7./ decisions for the
input over the control horizon.

Summarizing, a standard NMPC scheme works as
follows:

1. Obtain estimates of the states of the system.

2. Calculate a constraint-conforming optimal input
minimizing the desired cost function over the pre-
diction horizon using the system model and the
current state estimate for prediction.

3. Implement the first part of the optimal input until
the next sampling instant.

4. Continue with 1.

While it can be desirable for computational and
performance reasons to choose unequal lengths of
the prediction and control horizon (see e.g. [60]),
we assume in the following that T.=T, for our
presentation.

2.2. Mathematical Formulation of State Feedback
NMPC

Consider the stabilization of time-invariant nonlinear
systems of the form

xX(1) = flx(1), u(®),  x(0) = xo (1)
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subject to the input and state constraints:
u(tyeu, vt>0 (2)
x(r)eZ, Yt>0. (3)

With respect to the vector field f: R” x R” — R" we
assume that it is locally Lipschitz continuous in the
region of interest (typically the region of attraction)'
and satisfies f{0,0) =0. Furthermore, the set % C R™
is compact, & C R” is connected, and (0,0) € 2 x %.
Typically % and Z are (convex) box constraints of
the form:

U = {u € R"|umin <t < tmax} (4)

X = {X S Rn|xmin <x< Xmax}, (5)

with the constant vectors min, Umax aNA Xmins Xmax-

In sampled-data NMPC an open-loop optimal
control problem is solved at discrete sampling instants
t; based on the current state information x(¢;). Since
we consider a constant sampling time 6, the sampling
instants ¢; are given by t;,=i-6, i=0,1,2,.... When
the time ¢ and #; occurs in the same setting, ; should be
taken as the closest previous sampling instant #; < z.

The open-loop input signal applied in between the
sampling instants is given by the solution of the fol-
lowing optimal control problem:

Problem 1.

g?ﬂﬂmﬂO)

subject to  x(7) = f(x(7),u(7)), x(t;) = x(¢;)

(6a)
u(t) €U, (1) € X 7€ [ti, t; + T))] (6b)
M6+T,) €6 (6¢)

The bar denotes predicted variables (internal to the
controller), i.e. X(-) is the solution of (6a) driven by the
input @(-) : [t;,t; + Tp] — % with the initial condition
x(¢;). The distinction between the real system variables
and the variables in the controller is necessary, since
even in the nominal case the predicted values will not
be the same as the actual closed-loop values.

The cost functional J minimized over the control
horizon T,,> 6> 0 is typically given by

st = |
T E(R(+ T,)), @)

Ty

F(x(7),u(r)) dr

'This property is needed for the output feedback considerations in
Section 3.
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where the stage cost F: & x % — R™ is often assumed
to be continuous, satisfies F(0,0)=0, and lower
bounded by a class # function® ar: az(||x|) <
F(x,u)V(x,u) € X X U.

The terminal penalty term E and the so-called
terminal region constraint X(¢; + 7)) € & might or
might not be present. These are often used to enforce
nominal stability (see Section 2.3).

The stage cost can for example arise from econo-
mical and ecological considerations. Often, a quadratic
form for F'is used:

F(x,u) = x"Qx 4+ u' Ru (8)

with Q>0 and R>0.

The state measurement enters the system via the
initial condition in (6a) at the sampling instant, i.e. the
system model used to predict the future system
behavior is initialized by the actual system state. Since
all state information is necessary for the prediction,
the full state must be either measured or estimated.

The solution of the optimal control problem (6) is
denoted by #*(-; x(;)). It defines the open-loop input
that is applied to the system until the next sampling
instant ¢,

u(t; x(1:)) = w (6 x(1:)),

The control u(z;x(¢;)) is a feedback, since it is recal-
culated at each sampling instant using the new state
measurement. In comparison to sampled-data NMPC
for continuous time systems, in instantanecous NMPC
(also often referred to as receding horizon control) the
input is defined by the solution of Problem 1 at all
times: u(x(r)) = @*(t; x(7)), i.e. no open-loop input is
applied, see e.g. [68,69].

The solution of (1) starting at time #; from an initial
state x(¢1), applying an input u:[t;,f] — R" is
denoted by x(7; u(-), x(¢1), 7 €[t, t2]. We will refer to
an admissible input as:

1€ [ty tit1)- 9)

Definition 2.1 (Admissible input). An input u:
[0, T,] — R™ for a state x is called admissible, if it is:
(a) piecewise continuous, (b) u(1) € %Vt € [0, T}], (c)
x(T5u(-),x0) € XNV € [0, Tp), (d) x(Tp;u(-),x0) € &.

Furthermore, one refers to the so-called value func-
tion as:

Definition 2.2 (Value function). The value function
V(x) of the open-loop optimal control Problem 1 is
defined as the minimal value of the cost for the state
x: V(x)=J(x,a*(-;x)).

2A continuous function a: [0, 00) — [0, 00) is a class J~ function, if
it is strictly increasing and «(0)=0.

R. Findeisen et al.

The value function plays a central role in the stability
analysis of NMPC, since it often serves as a Lyapunov
function candidate [3,69].

Typically, no explicit controllability assumption on
the system is considered in NMPC. Instead, the sta-
bility results are based on the assumption of initial
feasibility of the optimal control problem, i.e. the
existence of a input trajectory u(-) s.t. all constraints
are satisfied.

From a theoretical and practical point of view, one
would like to use an infinite prediction and control
horizon, i.e. T, and T, in Problem 1 are set to co. This
would lead to a minimization of the cost up to infinity.
However, normally the solution of a nonlinear infinite
horizon optimal control problem cannot be calculated
(sufficiently fast). For this reason finite prediction and
control horizons are considered. In this case, the
actual closed-loop input and states will differ from the
predicted open-loop ones, even if no model plant
mismatch and no disturbances are present. At the
sampling instants the future is only predicted over
the prediction horizon. At the next sampling instant
the prediction horizon moves forward, allowing to
obtain more information thus leading to a mismatch
of the trajectories.

The unequalness of the predicted and the closed-
loop trajectories has two immediate consequences.
Firstly, the actual goal to compute a feedback such that
the performance objective over the infinite horizon of the
closed-loop is minimized is not achieved. In general it
is by no means true that the repeated minimization
over a moving finite horizon leads to an optimal solu-
tion for the infinite horizon problem. The solutions
will often differ significantly if a short finite horizon is
chosen. Secondly there is in general no guarantee that
the closed-loop system will be stable. It is indeed easy to
construct examples for which the closed-loop becomes
unstable if a short finite horizon is chosen. Hence,
when using finite prediction horizons special attention
is required to guarantee stability (see Section 2.3).

The summarize the key characteristics and proper-
ties of NMPC are:

o NMPC allows the direct use of nonlinear models for
prediction.

e NMPC allows the explicit consideration of state
and input constraints.

e In NMPC a specified time domain performance
criteria is minimized on-line.

e In NMPC the predicted behavior is in general dif-
ferent from the closed loop behavior.

e For the application of NMPC typically a real-time
solution of an open-loop optimal control problem is
necessary.
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e To perform the prediction the system states must be
measured or estimated.

Basing the applied input on the solution of an
optimal control problem that must be solved on-line is
advantageous and disadvantageous at the same time.
First, and most important, this allows to directly
consider constraints on states and inputs which are
often difficult to handle otherwise. Furthermore, the
desired cost objective, the constraints and even the
system model can in principle be adjusted on-line
without making a complete redesign of the controller
necessary. However, solving the open-loop optimal
control problem, if attacked blindly, can be difficult or
even impossible for large systems.

2.3. State Feedback NMPC and Nominal Stability

One of the most important questions in NMPC is
whether a finite horizon NMPC strategy does guar-
antee stability of the closed-loop or not. The key
problem with a finite prediction and control horizon is
due to the difference between the predicted open-loop
and the resulting closed-loop behavior. Ideally, one
would seek for an NMPC strategy which achieves
closed-loop stability independently of the choice of the
parameters and, if possible, approximates the infinite
horizon NMPC scheme as well as possible. An NMPC
strategy that achieves closed-loop stability indepen-
dently of the choice of the performance parameters is
often referred to as an NMPC approach with guar-
anteed stability. Different approaches to achieve
closed-loop stability using finite horizon lengths exist.
Here, only some central ideas are reviewed and no
detailed proofs are given. Moreover, no attempt is
made to cover all existing methods. Most of the
technical details are left out for reasons of a simple
presentation.

Without loss of generality it is assumed that the
origin (x=0 and u=0) is the steady state to be sta-
bilized.

Infinite Horizon NMPC: Probably the most intui-
tive way to achieve stability is to use an infinite hor-
izon cost, i.e. T, in Problem 1 is set to oco. In this case,
the open-loop input and state trajectories computed as
the solution of the NMPC optimization Problem 1 at
a specific sampling instant are in fact equal to the
closed-loop trajectories of the nonlinear system due
to Bellman’s principle of optimality [7]. Thus, the
remaining parts of the trajectories at the next sampling
instant are still optimal (end pieces of optimal trajec-
tories are optimal). This also implies convergence of
the closed-loop. Detailed derivations can be found in
[46,47,68,69].
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Finite Horizon NMPC Schemes with Guaranteed
Stability: Different possibilities to achieve closed-loop
stability using a finite horizon length exist. Most of
these approaches modify the standard NMPC setup
such that stability of the closed-loop can be guaran-
teed independently of the plant and performance
specifications. This is usually achieved by adding
suitable equality or inequality constraints and suitable
additional penalty terms to the standard setup. The
additional terms are generally not motivated by phy-
sical restrictions or performance requirements but
have the sole purpose to enforce stability. Therefore,
they are usually called stability constraints.

One possibility to enforce stability with a finite
prediction horizon is to add the so called zero terminal
equality constraint at the end of the prediction
horizon, i.e.

Xt+T,)=0 (10)

is added to Problem 1 [15,47,68,70]. This leads to
stability of the closed-loop, if the optimal control
problem has a solution at £=0. Similar to the infinite
horizon case the feasibility at one sampling instant
does imply feasibility at the following sampling
instants and a decrease in the value function. One
disadvantage of a zero terminal constraint is that the
predicted system state is forced to reach the origin in
finite time. This leads to feasibility problems for short
prediction/control horizon lengths, i.e. to small
regions of attraction. From a computational point of
view, an exact satisfaction of a zero terminal equality
constraint does require in general an infinite number
of iterations in the optimization and is thus not
desirable. The main advantages of a zero terminal
constraint are the straightforward application and the
conceptual simplicity.

Many schemes exist that try to overcome the use of
a zero terminal constraint of the form (10). Most of
them use the terminal region constraint X(t + 7)) € &
and/or a terminal penalty term E(x(1+ 7,)) to
enforce stability and feasibility. Typically the terminal
penalty E and the terminal region E are determined
off-line such that the cost function

4i+T,
J(x(0).a()) = / F(E(r). a(r)) dr
+ER(+T))) (11)

gives an upper bound on the infinite horizon cost and
guarantees a decrease in the value function as the
horizon recedes in time.

We do not go into details about the different
approaches. Instead, we state the following theorem,
which gives conditions for the convergence of the
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closed-loop states to the origin. It is a slight mod-
ification of the results given in [36] and [16,17].

Theorem 2.1. (Stability of sampled-data NMPC).
Suppose that

(a) the terminal region & C 2" is closed with 0 € &
and that the terminal penalty E(x) € C' is positive
semi-definite

(b) the terminal region and terminal penalty term are
chosen such that Vx € & there exists an (admis-
sible) input us : [0,6] — % such that x(7)in &
V7 €0, 6] and

g—f (x(7), ug (7)) +F(x(7),us (7)) <0 V€0,

(12)

(¢) the NMPC open-loop optimal control problem
is feasible for t=0.

Then in the closed-loop system (1) with (9) x(¢) con-
verges to the origin for t— oo, and the region of
attraction # consists of the states for which an
admissible input exists.

Proof. The proof is given here for sake of complete-
ness. It bases on using the value function as a
decreasing Lyapunov-like function. As usual in pre-
dictive control the proof consists of two parts: in the
first part it is established that initial feasibility implies
feasibility afterwards. Based on this result it is then
shown that the state converges to the origin. Feasibility.
Consider any sampling instant #; for which a solution
exists (e.g. 7). In between ¢; and ¢, | the optimal input
i*(-;x(t;)) is implemented. Since no model plant
mismatch nor disturbances are present, x(#y) =
X(tiv1;w (5 x(1;)), x(¢;)). The remaining piece of the
optimalinput it* (7; x(#)), T € [tis1, t; + T,) satisfies the
state and input constraints. Furthermore, x(#; + T);
x(t;),w* (- x(1;))) € € and we know from Assumption
(b) of the theorem that for all x € & there exists at
least one input ug(-) that renders & invariant over 4.
Picking any such input we obtain as admissible input
for any time 7,4+ 0, 0 €(0,¢; 1 — 1]

it (T x(t)), TE [titoti+ T,
ug(’l' — i — Tp),
TE(ti+ Ty ti+T,+ o]

u(r;x(t;+0)) =

(13)

Specifically, we have for the next sampling time (o =
t;v1—1t;) that @(-;x(#;41)) is a feasible input, hence
feasibility at time ¢; implies feasibility at z; ;. Thus, if
(6) is feasible for =0, it is feasible for all > 0.
Furthermore, if the states for which an admissible
input exists converge to the origin, it is clear that the
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region Z that consists of those points belongs to the
region or attraction.

Convergence: We first show that the value function is
decreasing starting from a sampling instant.
Remember that the value of V at x(¢;) is given by:

G+,
Wﬂ@ﬁ%ﬁ Fx(rsat (5 x(4)), x(6)), u” (75 x(1) )d7
+E(X(ti + Ty (5 x(1:)), x(12)), (14)

and the cost resulting from (13) starting from any
x(t; + oy w* (5 x(8)), x(¢:)), 0€(0,¢;41—1;], using the
input (7, x(#; + o)), is given by

J(x(ti + o), u(; x(t; + 0)))
B /+ L F(R(rs i (6 + 0)), x(1+ o)),
u(r;x(t; +0)) dr + E(X(t; + 0 + Tp;
u(5x(ti +0)), x(ti + 0))). (15)

Reformulation yields
J(x(t; + o), u(-; x(t; + 0)))
V) = [ Bt (3 3(00).3(0),
X L?*(T;x(li))l) dr—E(x(t;i+ Tp; a*(; x(1;)),

<x(m) + [

ti+T),

ti+o+T,
F(x(r;a(; x(t; + o)),

X x(t; +0)),u(t; x(t; + 0))) dr
+ E(x(ti+0+Tp; u(-, x(ti + 0)), x(t; + 0))).
(16)

Integrating inequality (12) from t;+o0 to t;(+0+ 1T,
starting from x(#;,4+ 0) we obtain zero as an upper
bound for the last three terms on the right side. Thus,

J(x(t; + U,?iﬁ(';x(l" +0))) — V(x(t;))
s—[ FE(rs (- x(1)) & (73 x(1)) dr.
(17)

Since u is only a feasible but not necessarily the opti-

" mal input for x(#;+ 0), it follows that

Vx(ti + 0)) — V(x()
Sj['HﬂﬂWUMm%meﬂnﬂmnw,
(18)

i.e. the value function is decreasing along solution
trajectories starting at a sampling instant ¢;. Especially,
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we have that:
Vxlti) - Vix(n)
< [ At (ox(w)x(). 7 (i) ar
| (19

By assumption, this decrease in the value function is
strictly positive for x(z;)# 0. Since this holds for all
sampling instants, convergence can be established as
in [18,36] by an induction argument and the applica-
tion of Barbalat’s lemma.

Loosely speaking, FE is an F-conform local control
Lyapunov function in &. The terminal region con-
straint enforces feasibility at the next sampling instant
and allows, similarly to the infinite horizon case, to
show that the value function is strictly decreasing.
Thus, stability can be established. Note that this result
is nonlocal in nature, i.c. there exists a region of attrac-
tion # which is of at least the size of &. Typically, the
region of attraction resulting from this scheme is much
larger than & and contains the set of all states for
which the open-loop optimal control problem has a
feasible solution.

Various ways to determine a suitable terminal
penalty term and terminal region exist. Examples are
the use of a control Lyapunov function as terminal
penalty E [45,74,84] or the use of a local nonlinear or
linear control law to determine a suitable terminal
penalty £ and a terminal region & [17,18,20,63,71].

Quasi-infinite horizon NMPC: We exemplify the
choice of a suitable terminal region constraint and a
terminal penalty term considering the so called quasi-
infinite horizon NMPC (QIH-NMPC) approach
[16,18,31]. In QIH-NMPC E and & are obtained on
the basis of a locally stabilizing linear control law
ug = Kx considering a quadratic stage cost of the
form (8). The terminal penalty term E in this case is
quadratic and of the form E(x) = x' Px. The following
procedure gives a systematic approach to compute the
terminal region and a terminal penalty matrix off-line
[18], assuming that the Jacobian linearization (A, B) of
(1) is stabilizable, where
of

A= 5(0, 0) and

of
B:=—(0,0).
5 (00
Step 1
Solve the linear control problem based on the Jacobian
linearization (A4, B) of (1) to obtain a locally stabilizing

linear state feedback us = Kx.

Step 2
Define Ax:=A+ BK, and choose a constant k€
[0,00) satisfying &< —Anax(Ax) and solve the
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Lyapunov equation

(Ag + &I)"P+ P(Ag + rI) = —(Q + K'RK)

(20)
to get a positive definite and symmetric P.
Step 3
Find the largest possible «; defining a region
&= {x eR"x"Px < ay} (21)

such that Kx € %, for all x € &;.

Step 4
Find the largest possible « € (0, o] specifying a termi-
nal region

&= {x e R"|x"Px < a} (22)

such that the optimal value of the following optimi-
zation problem is non-positive:

max{xT Pp(x) — r - xT Px|xTPx < a} (23)
X

where p(x): =1f(x, Kx) — Agx.

This procedure allows to calculate E and & if the lin-
earization of the system at the origin is stabilizable. If
the terminal penalty term and the terminal region are
determined accordingly, the open-loop optimal tra-
jectories found at each time instant approximate the
optimal solution for the infinite horizon problem.

Remark 2.1. Theorem 2.1 allows to consider the sta-
bilization of systems that can only be stabilized by
feedback that is discontinuous in the state [36,37], e.g.
nonholonomic mechanical systems. This is possible
since the optimal input signal is applied over the
sampling time open-loop to the system. For such
systems, however, it is in general rather difficult to
determine a suitable terminal region and a terminal
penalty term — for instance, the QIH-NMPC method
cannot be used.

Remark 2.2. The use of a terminal inequality con-
straint leads to computational and feasibility advan-
tages compared to the infinite horizon and zero
terminal constraint approach. No zero terminal con-
straint must be met in finite time. The solution time
necessary for solving the open-loop optimal control
problem is decreased, since no “boundary-value”
problem stemming from the zero terminal constraint
must be solved. Furthermore, note that in NMPC it is
in general not necessary to find always an optimal
solutions of Problem 1 in order to guarantee stability
[18,45,82]. Only a feasible solution leading to a
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decrease in the value function is necessary. This can be
utilized to decrease the necessary on-line solution time
and makes the practical application more robust.

Summarizing, the nominal stability question of
NMPC in the state feedback case is well understood.
Various NMPC approaches that guarantee stability
exist.

2.4. Robustness and NMPC

The NMPC schemes presented are based on the
assumption that the actual system is identical to the
model used for prediction, i.e. that no model/plant
mismatch or unknown disturbances are present.
Clearly, this is very unrealistic for practical applica-
tions and the development of an NMPC framework to
address robustness issues is of paramount importance.
In general, one distinguishes between the inherent
robustness properties of NMPC and NMPC designs
taking the uncertainty/disturbances directly into
account.

The inherent robustness of NMPC is related to the
fact that nominal NMPC can cope with uncertainties
and disturbances without taking them directly into
account. This fact stems from the close relation of
NMPC to optimal control and inverse optimality
considerations [15,64]. Without going into details, we
refer to [64,69,71,83].

NMPC schemes that take the uncertainty/dis-
turbance directly into account are often based on min-
max considerations. A series of different approaches
can be distinguished. For details we refer for example
to [13,19,49,52,58,61,62].

2.5. Efficient Real-time Solution of NMPC

One important precondition for the application of
NMPC, is the availability of reliable and efficient
numerical dynamic optimization algorithms, since at
every sampling time a nonlinear dynamic optimization
problem must be solved in real-time. Solving such an
optimization problem efficiently and fast is, however,
not a trivial task and has attracted strong research
interest in recent years (see e.g. [6,10,11,23,25-27,55,
65-67,86,90]).

Typically so called direct solution methods
[11,12,76] are used, i.e. the original infinite dimen-
sional problem is turned into a finite dimensional
one by discretizing the input (and also possibly the
state). Basically, this is done by parameterizing the
input (and possibly the states) by a finite number
of parameters and to solve/approximate the dif-
ferential equations during the optimization. We do
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not go into further details here and instead refer
to [12,25,67].

Recent studies have shown, that using special dyna-
mic optimizers and tailored NMPC schemes allows to
employ NMPC to practically relevant problems (see
e.g. [6,27,32,66,86,35]) even with todays computa-
tional power.

3. NMPC Output Feedback Problem

So far, we assumed that the full state information can
be measured and is available as initial condition for
predicting the future system behavior. In many appli-
cations, however, the system state cannot be fully
measured, i.e. only an output y is directly available for
feedback:

y = h(x,u) (24)

where y() € R” are the measured outputs and where
h:R"x R" — R” maps the state and input to the
output. Thus, to apply predictive control methods the
state must be estimated from the measured outputs
using suitable state observers or filters. However, even
if the state feedback NMPC controller and the obser-
ver used are both stable, there is no guarantee that the
overall closed loop is stable with a reasonable region
of attraction, since no general valid separation prin-
ciple for nonlinear systems exists.

To achieve non-local stability results of the observer
based output feedback NMPC controller, two possi-
bilities (and mixtures thereof) seem to be attractive:

Separated Designs/Certainty Equivalence Approach:
In this approach, the observer state estimate is used as
the real system state following the “certainty equiva-
lence” principle. To show stability of the closed-loop,
one tries to separate the observer error from the state
feedback for example by time scale separation. Uti-
lizing observers for which the speed of convergence of
the observer error can be made sufficiently fast and
the absolute achieved observer error can be made
sufficiently small, semi-regional stability results for
the closed-loop can be established.

Consideration of the observer error in the NMPC
controller: In this approach, the observer error is
acknowledged in the controller, typically by using
some bounds on the observer error. This solution is
closely related to the design of robustly stabilizing
NMPC schemes and typically requires observers that
deliver an estimate of the observer error.

Following the first approach we derive in this
section, for a broad class of state feedback NMPC
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controllers, conditions on the observer that guarantee
that the closed-loop is semi-globally practically stable.
The result is based on the results presented in [34,43],
where high-gain observers are used for state recovery.
Basically, we exploit that sampled-data predictive
controllers that possess a continuous value function
are inherently robust to small disturbances, i.e. we will
consider the estimation error as a disturbance acting
on the closed-loop. Before we derive the approach, we
give a brief review of the existing output feedback
NMPC approaches.

3.1. Existing Output-Feedback Results

Various researchers have addressed the question of
output feedback NMPC using observers for state
recovery. We restrict the discussion to output feed-
back MPC schemes relying on state space models for
prediction and differentiate between the two output
feedback design approaches as outlined above. The
“certainty equivalence” — method is often used in a
somewhat ad-hoc manner in industry [78], e.g. based
on the (extended) Kalman filter as a state observer. In
the presence of a separation principle, this would be a
theoretically sound way to achieve a stabilizing output
feedback scheme. Unfortunately, a general separation
principle does not exist for MPC — even in the case of
linear models, the separation principle for linear sys-
tems is void due to the presence of constraints. Thus,
at the outset, nothing can be said about closed loop
stability in this case, and it seems natural that one has
to restrict the class of systems one considers to obtain
results. As an example, [91] shows global asymptotic
stability for the special case of discrete-time linear
open-loop stable systems.

For a more general class of nonlinear systems, it can
be shown that the properties of the value function as a
Lyapunov function gives some robustness of NMPC
to “small” estimation errors. For “weakly detectable”
discrete-time systems, this was first pointed out in
[83] (see also [57,59], and an early version in [74]).
However, these results must be interpreted as “local”,
in the sense that even though that an approximated
region of attraction can be calculated in principle, it is
not clear how parameters in the controller or observer
must be tuned to influence the size of the region of
attraction.

In [24], local uniform asymptotic stability of con-
tractive NMPC in combination with a “sampled”
EKF state estimator is established.

Non-local results are obtained in [72], where an
optimization based moving horizon observer com-
bined with the NMPC scheme proposed in [71] is
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shown to lead to (semi-global) closed-loop stability.
For the results to hold, however, a global optimization
problem for the moving horizon observer with an
imposed contraction constraint must be solved.

More recently, “regional” separation principle-
based approaches have appeared for a wide class of
NMPC schemes. In [43,44], it was shown that based
on the results of [5, 85], semi-global practical stability
results could be obtained for instantaneous NMPC
based on a special class of continuous-time models,
using high gain observers for state estimation. In this
context, semi-global practical stability means that for
any compact region inside the state feedback NMPC
region of attraction, there exists a sampling time and
an observer gain such that for system states starting in
this region, the closed loop take the state into any
small region containing the origin. The result of [43]
are developed further to the more realistic sampled-
data case in [33,34], still considering a class (albeit a
larger one) of continuous-time systems. In [30], it is
pointed out how these results can be seen as a con-
sequence of NMPC state feedback robustness. In [42],
conditions are given on the system and the observer
for the state to actually converge to the origin.

Related results appeared recently in [1], where for
the same system class as considered in [43], semi-
global practical stability results are given for sampled-
data systems using sampled high-gain observers.

In [89], a scheduled state feedback NMPC scheme is
combined with an exponential convergent observer,
and regional stability results are established. On a
related note, the same authors show in [88] how an
NMPC controller can be combined with a convergent
observer to obtain stability, where stability is taken
care of off-line.

In the robust design approach the errors in the state
estimate are directly accounted for in the state feed-
back predictive controller. For linear systems, [§]
introduces a set membership estimator to obtain
quantifiable bounds on the estimation error, which
are used in a robust constraint-handling predictive
controller. The setup of [8] is taken further in [21],
using a more general observer, and considering more
effective computational methods. For the same class
of systems, [56] does joint estimation and control
calculation based on a minimax formulation, however
without obtaining stability guarantees.

For linear systems with input constraints, the
method in [54] obtains stability guarantees through
computation of invariant sets for the state vector
augmented with the estimation error. In a similar
fashion, by constructing invariant sets for the observer
error, [50] adapts the NMPC controller in [14] such
that the total closed loop is asymptotically stable.
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3.2. Output Feedback NMPC with Stability—Setup

In the following, we present one specific approach to
output feedback NMPC. It is based on the fact that
sampled-data predictive controllers that possess a
continuous value function are inherently robust to
small disturbances, i.e. we will consider the estimation
error as a disturbance acting on the closed-loop. This
inherent robustness property of NMPC is closely
connected to recent results on the robustness proper-
ties of discontinuous feedback via sample and hold
[48]. However, here we consider the specific case of
sampled-data NMPC controller and we do not
assume that the applied input is realized via a hold
element.

Setup: Instead of the real system state x(z;) at every
sampling instant only a state estimate x(¢;) is avail-
able. Thus, instead of the optimal feedback (9) the
following “disturbed” feedback is applied:

u(t; (1)) = a* (6, x(1;)),

Note that the estimated state x(z;) can be outside the
region of attraction # of the state feedback NMPC
controller. To avoid feasibility problems we assume
that in this case the input is fixed to an arbitrary, but
bounded value.

The NMPC scheme used for feedback is assumed to
fit the setup of Theorem 2.1. Additionally, we make
the following assumptions:

A [l,’, ll'+1). (25)

Assumption 1. In the nominal region of attraction
A C X CR" the following holds:

1. Along solution trajectories starting at a sampling
instant #; at x(;) € 4, the value function satisfies
for all positive 7:

V(X(ti + 7[')+) — V(x([i))
< —[ F(x(s), u(s; x(s;))) ds. (26)

2. The value function V(x) is uniformly continuous.
3. For all compact subsets 7 C £ there is at least one
level set Q. = {x € Z|V(x) < ¢} s.t. T C ..

Following Theorem 2.1, Assumption 1.1 imply stabi-
lity of the state feedback NMPC scheme (compare
equation (18) in the proof of Theorem 2.1), and is
typically satisfied for stabilizing NMPC schemes.
However, in general there is no guarantee that a sta-
bilizing NMPC schemes satisfies Assumption 1.2 and
1.3, especially if state constraints are present. As is
well known [36,40,70], NMPC can also stabilize sys-
tems that cannot be stabilized by feedback that is
continuous in the state. This in general also implies a
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discontinuous value function. Many NMPC schemes,
however, satisfy this assumption at least locally around
the origin [18,20,69]. Furthermore, for example
NMPC schemes that are based on control Lyapunov
functions [45] and that are not subject to constraints
on the states and inputs satisfy Assumption 1.

Remark 3.1. Note that the uniform continuity
assumption on V(x) implies that for any compact
subset .7~ C 2 there exists a J -function o) such that
for any x1,x; € 7| V(x1) = V(x2)|| < ap(||x1 — x2]|)-

We do not state any explicit observability assump-
tions, since they depend on the observer used for state
recovery. As outlined later, several different observers
satisfy the conditions required for the semi-global
practical stability results to be derived.

Concerning the observer used, however, we assume
that after an initial phase, the observer error at the
sampling instants can be made sufficiently small, i.e.
we assume that

Assumption 2. (Observer error convergence). For any
desired maximum estimation error e,,, > 0 there exist
observer parameters, such that

||X(l,‘) - )2([1)” < emax, Vi > KeonyO. (27)
Here, k.ony > 0 is a freely chosen, but fixed number of

sampling instants after which the observer error has to
satisfy (27).

Remark 3.2. Depending on the observer used, further
conditions on the system (e.g. observability assump-
tions) might be necessary. Note that the observer does
not have to operate continuously since the state
information is only necessary at the sampling times.

Note that there exist a series of observers which
satisfy Assumption 2, see Section 3.4. Examples are
high-gain observers and moving horizon observers
with contraction constraint.

Since we do not assume that the observer error
converges to zero, we can certainly not achieve
asymptotic stability of the origin, nor can we render
the complete region of attraction of the state feedback
controller invariant. Thus, we consider in the follow-
ing the question if the system state in the closed loop
can be rendered semi-globally practically stable, under
the assumption that for any maximum error e, there
exist observer parameters such that (27) holds. In this
context, semi-globally practically stable means, that
for arbitrary sets £, C Q, C Q. C %, 0<a<c¢y<c
there exist observer parameters and a maximum
sampling time 6 such that Vx(0)€Q.: 1. x(¢) €,
t>0, 2. dTa>0 st x(1)eQa, Vi>Ta. For
clarification see Fig. 2.
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Fig. 2. Set of initial conditions ()., desired maximum
attainable set €. and desired region of convergence €2,,.

Note, that in the following we only consider level
sets for the desired set of initial conditions (€2,,), the
maximum attainable set (€2.) and the set of desired
convergence (£2,). We do this for pure simplification
of the presentation. In principle, one can consider
arbitrary compact sets which contain the origin, and
subsets of each other and of %, since due to
Assumption 1.3 it is always possible to find suitable
covering level sets.

Basic Idea: The derived results are based on the
observation that small state estimation errors lead to a
(small) difference between the predicted state trajec-
tory X based on the estimated state X(#;) and the real
state trajectory (as long as both of them are contained
in the set €2.). As will be shown, the influence of the
estimation error (after the convergence time k¢qny0) of
the observer can in principle be bounded by

V(1) — Vx(t) < ex(lx(s) — 261
[t s K s .
28)

where e, corresponds to the state estimation error
contribution. Note that the integral contribution is
strictly negative. Thus, if e, “scales” with the size of the
observer error (it certainly also scales with the sam-
pling time ) one can achieve contraction of the value
function.

However, considering Assumption 2, the bounding
is possible after a certain time. To avoid that the
system state leaves the set (2. during this time we have
to decrease the sampling time é (or use smaller sam-
pling times initially).

In order to bound the integral contribution on the
right side of (28), we state the following fact:

Fact 1. For any ¢>a >0 with Q. C #, T,> 6 >0 the
lower bound V(¢ a, 8) on the value function exists
and is non-trivial for all xo € £./Q : Omin(c, @, 6) :=
miny co, /o, fg F(X(s;u*(+;x0), X0), (85 x0))ds < o0.
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3.3. Output Feedback NMPC with
Stability—Main Result

Under the given setup the following theorem holds

Theorem 3.1. Assume that Assumption 1 and 2 hold.
Then given arbitrary level sets , C Q. C Q. C £,
there exists a maximum allowable observer error ey,
and a maximum sampling time 6,45, such that for all
initial conditions x, € €2, the state x(7) stays in the
region 2. and converges in finite time to the set {2,,.

Proof. The proof is divided into three parts. In the
first part it is ensured that the system state does not
leave the maximum admissible set 2. during the
convergence time keo,0 of the observer. This is
achieved by decreasing the sampling time ¢ suffi-
ciently. In the second part is shown, that by requiring
a sufficiently small e, the system state converges
into the set §2,,». In the third part, it is shown that the
state will not leave the set €2, once it has entered €,/»
at a sampling time.

First part (x(1) € Q. V.(0) € Qe T €0, keony0)):

We first derive conditions guaranteeing that states
starting in Q, stay in 2., for a certain time for all
possible inputs. Note that €., is strictly contained in
Q2. and thus also in €2, with ¢;: = ¢o + (¢ — ¢¢)/2. Thus,
there exists a time T, such that x(r)€Q,, V0 <7<
T, c1. The existence of such a time is guaranteed, since
as long as x(1)€ Q. [x(r) = x(O) < f7 [/ (x(s).
u(s))|lds < kg t, where kq_ is a constant depending on
the Lipschitz constants of f'and on the bounds on u.
We take T, c; as the smallest (worst case) time to reach
the boundary of €. from any point x, € €2, allowing
u(s) to take any value in %. By similar arguments there
exists also a time T,c such that for all x(z;) € Qc,,
x(1) €8, VT E[t;, t;+ T, ) where c;=c|+(c—c;)/2.
We now pick the maximum sampling time 6,5 as

6max S min{Tcocl /kCOIlVa Tczc}- (29)

The sampling time 6 is assumed to be less or equal
to this maximum value for the remainder of the
proof. This ensures that the state will be at least during
the convergence of the observer completely contained
in Q..

Furthermore, we need for the second part of the proof
that for any x(;) € Q. X(1;) € Q,, after the observer has
converged. Note that due to Assumption 2 there
always exist observer parameters such that after
Omaxkeony the observer error is smaller than any
desirable e,.x. If we require that

ay(emax) < ¢ —ci (30)

it is guaranteed that X(z;) € Q,, if x(#;) € Q...
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Second part (decrease of the value function after observer
convergence and finite time convergence to §,»):

We assume that x(#;) € €. . For simplicity of notation,
ue denotes the optimal input resulting from x(z;) and
u, denotes the input that correspond to the real state
x(t;). Furthermore, x;= x(¢;) and X;= X(t,).

Note that since x; € 2, we know by the derivations
in the first part of the proof that X;€ (., and that
X(1) € Qe x(15 X, ue) € Q, X(75 x5, ue) €EQNTE[t;, 81 1).
Under these conditions the following equality is valid:

V(x(r; xi,uz)) — V(x;) = V(x(7; x5, uz))
— V(x(7; X uz)) + V(x(r; %4, uz)) — V(%)
+ V(%) = V(xi). (31)
We can bound the last two terms since ¥ is uniformly
continuous in compact subsets of Z O .. Also note

that the third and fourth term start from the same x;,
and that the first term can be bound via ap:

V(x(r:xi,uz)) — V(xi) < ap(eT9||z; — x;)
- / F(x(s; X1, uz), uz) ds + ap (]| % — xi])-
ti
(32)

Here, we used an upper bound for ||x(r;x,ue)—
x(7;X;,uz)|| based on the Gronwall-Bellman lemma. If
we now assume that x; ¢ €, and that

«
aV(emax) < Za (33)

then we know that xX;¢ Qa/43. Thus we we obtain from
(31) using Fact 1 that

(67
V(X((S, Xi, u‘%)) - V(Xl) S — Vmin ((/’ Z’ 6)

= xll) + ar(lt - xl). (34)

+ ay (eLf—"

To guarantee that x is decreasing from sampling
instant to sampling instant along the level sets, and to
achieve convergence to the set €, in finite time we
need that the right-hand side is strictly less than zero.
One possibility to obtain this is to require, that the
observer parameters are chosen such that:

ay (1% — xill) + ar((|%i — x]))
(0% (6%
- Vmin(ca Za(s) < —Viin (Cs Z’ 5)

+%me (c, %5) (35)

3The values /2 and «/4 are chosen for simplicity.
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Thus, if we choose the observer parameters such that
1
aV(eLf:véelnax) + aV(emax) < 5 Vimin (ca %a 6)
and  ay(ema) < % (36)

we achieve finite time convergence from any point
x(t;) € Q,, to the set .

Third part (x(ti+ 1) S Qa Vx(ll-) € Qa/2): If x(tl) € Qa/2
equation (37) is still valid. Skipping the integral con-
tribution on the right we obtain:

V(x(7; x5 u5)) = V(x) < ap (71 % — xi|)
+ ap (|| % — xil|) (37)
Thus if we assume that
«
aV(efoéemax) + OéV(emax) <= (38)

5
then x(#;1 1) € Q, Vx(t;) €. Combining all three
steps, we obtain the theorem if

6max < mln{ Tcocl /kCOI'lVa Tczc}- (39)

and if we choose the observer error ey, such that

1
aV(eL/\6emax)+aV(emax) < min{i V min (c, %, 5) s %}

(40)

Remark 3.3. Explicitly designing an observer based
on (40) and (39) is in general not possible. However,
the theorem underpins that if the observer error can be
sufficiently fast decreased that the closed-loop system
state will be semi-globally practically stable.

Theorem 3.1 lays the basis for the design of observer
based output feedback NMPC controllers that
achieve semi-global practical stability. While in prin-
ciple Assumption 2 is difficult to satisfy, quite a
number of observers designs achieve the desired
properties as shown in the next Section.

3.4. Output Feedback NMPC with
Stability — Possible Observer Designs

Various observers satisfy Assumption 2 and thus
allow the design of semi-globally stable output feed-
back controllers following Theorem 3.1. We will go
into some detail for standard high-gain observers [87]
and optimization based moving horizon observers
with contraction constraint [72]. Note, that further
observer designs that satisfy the assumptions are for
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example observers that possess a linear error dynam-
ics where the poles can be chosen arbitrarily (e.g.
based on normal form considerations and output
injection [9, 51]), or observers that achieve finite con-
vergence time such as sliding mode observers [28] or
the approach presented in [29].

High Gain Observers: One possible observer design
approach that satisfies Assumption 2 are high-gain
observers. Basically, high-gain observers obtain a state
estimate based on approximated derivatives of the
output signals. They are in general based on the
assumption that the system is uniformly completely
observable. Uniform complete observability is defined
in terms of the observability map 2, which is given by
successive differentiation of the output y:

YT = yls).}ls"~ay<1rl)ay23'~'sypa~'~s 1()"p)j|

= (x)". (41)

Here, Yisthe vector of output derivatives. Note that we
assume for simplicity of presentation that »# does not
depend on the input and its derivatives. More general
results allowing that # depends on the input and its
derivatives can be found in [34]. We assume that the
system is uniformly completely observable, i.e.

Assumption 3. The system (1) is uniformly completely
observable in the sense that there exists a set of indices
{ri,...,rp} such that the mapping Y = J#(x) depends
only on x, is smooth with respect to x and its inverse
from Y to x is smooth and onto.

Application of the coordinate transformation
¢ := A (x), where A is the observability mapping, to
the system (1) leads to the system in observability
normal form in ¢ coordinates

¢ =AC+ Bo(Cu), y=CC. (42)
The matrices 4, B and C have the following structure

A = blockdiag [4:, ... A4,],

01 0 -0
0 0 1 - 0

A= (43a)
0 0 1
0 0l, ..

B = blockdiag [B, ..., By),

Bi=[0 -+ 0 1], (43b)
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C = blockdiag [Ci, ..., C,),

Ci=[1 0 - 0] (43¢)

Ixr;»
and ¢ : R" x R” — R” is the “system nonlinearity” in
observability normal form. The high-gain observer*

= Al + H.(y — CO) + BH(C u) (44)

allows recovery of the states [4,87] ( from information
of y(t) assuming that

Assumption 4. ¢ in (44) is globally bounded.

The function qﬁ is the approximation of ¢ that is used in
the observer and which may be deduced from ¢. The
observer gain matrix H, is given by H,=blockdiag
(Hei... . H.p|withHT = [aﬁ”/e, agl)/sz, al /e,
where ¢ is the so-called high-gain parameter since 1/e
goes to infinity for € — 0. The als are design para-

j
meters and must be chosen such that the polynomials

s+ agi)s”71+ cee afﬁls + a,@ =0,

i=1,...,p

are Hurwitz.

Note that estimates obtained in ¢ coordinates can be
transformed back to the x coordinates by £ = # ! (¢).

Asshownin[4]and utilized in[34], under the assump-
tion that the initial observer error is out of a compact
set and that the system state stays in a bounded region,
for any desired e,,,, and any convergence time k.o,0
there exists a maximum & such that for any € < ¢* the
observer error stays bounded and satisfies: ||x(7) —
X(D|IVT > keonvd-

Thus, the high-gain observer satisfies Assumption 2.
Further details can be found in [33,34].

Moving Horizon Observers: Moving horizon estima-
tors (MHE) are optimization based observers, i.e. the
state estimate is obtained by the solution of a dynamic
optimization problem in which the deviation between
the measured output and the simulated output start-
ing from estimated initial state is minimized. Various
approaches to moving horizon state estimation exist
[2,72,79,92]. We focus here on the MHE scheme with
contraction constraint as introduced in [72], since it
satisfies the assumptions needed. In the approach
proposed in [72] basically at all sampling instants a
dynamic optimization problem is solved, considering
the output measurements spanning over a certain
estimation window in the past. Assuming that certain
reconstructability assumptions hold and that no distur-
bances are present, one could in principle estimate the

“We use hatted variables for the observer states and variables.
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system state by solving one single dynamic optimiza-
tion problem. However, since this would involve the
solution of a global optimization problem in real-time,
it is proposed in [72] to only improve the estimate at
every sampling time by requiring that the integrated
error between the measured output and the simulated
output is decreased from sampling instant to sampling
instant. Since the contraction rate directly corre-
sponds to the convergence of the state estimation error
and since it can in principle be chosen freely this MHE
scheme satisfies the assumptions on the state esti-
mator. Thus, it can be employed together with a state
feedback NMPC controller to achieve semi-global
practical stability as explained in Section 3.3.

4. Conclusions

Model predictive control for linear constrained
systems has been proven as a useful control solution
for many practical applications. It is expected that the
use of nonlinear models in the predictive control
framework, leading to nonlinear MPC, results in
improved control performance and allows the direct
use of first principle based models. However, the
consideration of nonlinear models also poses chal-
lenging theoretical, computational and implementa-
tional problems.

In the first part of this paper an overview of various
aspects of NMPC has been given. We mainly focused
on sampled-data NMPC, since the plant model is
usually derived based on first principles. As outlined,
some of the challenges occurring in NMPC such as
stability, efficient solution of the dynamic optimiza-
tion problem etc. are already (at least partially) solved.
Nevertheless many unsolved questions remain.

In the second part of the paper we addressed the
important question of output feedback NMPC. Spe-
cifically we expanded the sampled-data output feed-
back NMPC approach for continuous time systems as
presented in [33,34] to a wider class of observers
stating conditions the observer error must satisfy such
that the closed-loop is semi-globally practically stable.
As shown, several observer designs satisfy the
required conditions. However, the results should be
seen as conceptual rather then as practically applic-
able. For example it is in general difficult to establish a
priori that the value function is continuous. In general
there is no guarantee that nominally stable NMPC
schemes satisfy this assumption, especially if con-
straints on the states are present, see [40]. Thus, future
research has to focus on either relaxing this condition,
or to derive conditions under which an NMPC scheme
does satisfy this assumption, see for example [41].
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