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Summary

This work considers theoretical and implementational aspects of sampled-data open-loop nonlinear
model predictive control (NMPC) of continuous time systems. In general, in model predictive control
the applied input is based on the repeated solution of an optimal control problem, which spans over a
certain prediction horizon into the future. Sampled-data open-loop NMPC refers to NMPC schemes,
in which the optimal control problem is only solved at discrete recalculation instants, and where the
resulting optimal input signal is applied open-loop in between. Various aspects and open questions
in sampled-data open-loop NMPC are considered in this work. Specifically, methods for efficient
implementations of NMPC are presented, and results with respect to theoretical questions such as
nominal stability, compensation of computational and measurement delays, inherent robustness, and
the output-feedback problem for sampled-data open-loop NMPC are derived. Most of the derived
results are not limited to NMPC. They are rather applicable to a general class of sampled-data open-
loop feedback control schemes.
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Deutsche Kurzfassung

Einführung

Viele praktische Regelungsaufgaben verlangen neben der Stabilisierung der Strecke die Minimierung
einer Kostenfunktion unter Berücksichtigung von Beschränkungen an die Prozessgrößen. Ein Bei-
spiel hierfür ist die Regelung eines exothermen Polymerisationsprozesses unter Beachtung einer be-
schränkten Kühlleistung mit dem Ziel der Minimierung der eingesetzten Energie. Ein Regelungsver-
fahren, das diesen Anforderungen gerecht wird, ist die prädiktive Regelung.

Die prädiktive Regelung, auch modell-prädiktive Regelung oder Regelung auf einem sich bewegen-
dem Horizont1 gehört zur Klasse der modell-basierten Regelungsverfahren. Im Gegensatz zu her-
kömmlichen Regelungsverfahren, wie zum Beispiel der PI-Regelung, wird das Eingangssignal in der
prädiktiven Regelung nicht nur auf der Basis des aktuellen Zustands bestimmt. Vielmehr wird das
vorhergesagte Verhalten der Strecke explizit bei der Selektion des Eingangssignals berücksichtigt. Zu
diesem Zweck wird das dynamische Verhalten des Systems mit Hilfe eines Prozessmodells über einen
bestimmten Zeitraum in die Zukunft, dem sogenannten Prädiktionshorizont Tp, vorhergesagt (verglei-
che auch Abbildung 1). Basierend auf dieser Vorhersage wird der Stellgrößenverlauf so bestimmt,

Eingang u

Zustand x

Prädiktionshorizont Tp

Zustand x

Eingang u

Prädiktionshorizont Tp

Prädizierter Zustand x̄Prädizierter Zustand x̄

Steuerung ū Steuerung ū

t2t1 t1 + Tp t1 t2 t2 + Tp

Abtastzeitpunkt t1 Abtastzeitpunkt t2

Abbildung 1: Grundprinzip der prädiktiven Regelung. Die Zeitpunkte ti bezeichnen die Abtastzeiten und Tp

den Prädiktionshorizont.

dass eine vorgegebene Kostenfunktion, in den meisten Fällen die integrierte quadratische Regelab-
weichung, minimiert wird. Der erste Teil des resultierenden optimalen Stellgrößenverlaufs wird als

1Im Englischen als moving horizon control, model predictive control (MPC) oder receding horizon control bezeichnet.
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Steuerung auf das System aufgeschaltet und der aus Prädiktion und Minimierung der Kostenfunktion
bestehende Vorgang zum nächsten Abtastzeitpunkt wiederholt.

Prinzipiell unterscheidet man zwischen linearer und nichtlinearer prädiktiver Regelung. Bei der linea-
ren prädiktiven Regelung werden ein lineares Prozessmodell und eine quadratische Kostenfunktion
verwendet, und es können lineare Beschränkungen berücksichtigt werden.

In Lauf der letzten Jahrzehnte hat sich die lineare prädiktive Regelung, vor allem in der Prozessin-
dustrie, als eines der Standardregelungsverfahren etabliert (Qin and Badgwell, 2000; Qin and Badg-
well, 2003; García et al., 1989; Morari and Lee, 1999; Froisy, 1994). So wurde bereits im Jahr 1996
von mehr als 2200 erfolgreichen industriellen Anwendungen der linearen prädiktiven Regelung be-
richtet (Qin and Badgwell, 1996). Schätzungen aus dem Jahr 2002 (Qin and Badgwell, 2003) gehen
von mehr als 4500 industriell eingesetzten linearen prädiktiven Reglern aus. Der Einsatzbereich er-
streckt sich von der Chemieindustrie über die Lebensmittelindustrie bis hin zur Luft- und Raumfahrt
und der Automobilbranche. Der industrielle Erfolg der linearen prädiktiven Regelung ist auch daran
ersichtlich, dass in Prozessleitsystemen der neusten Generation oft standardmäßig einfache lineare
prädiktive Regelungsverfahren implementiert sind (Qin and Badgwell, 2003). Die meisten theoreti-
schen als auch praktischen Fragestellungen auf dem Gebiet der linearen prädiktiven Regelung kön-
nen als sehr gut verstanden angesehen werden (Lee and Cooley, 1996; Morari and Lee, 1999; Mayne
et al., 2000).

Ständig steigende ökologische, ökonomische und sicherheitstechnische Anforderungen er-zwingen
heutzutage jedoch oft, die betrachteten Prozesse über einen großen Arbeitsbereich zu betreiben.
Für die Regelung solcher Prozesse spielt die Berücksichtigung auftretender Nichtlinearitäten oft
eine wichtige Rolle, da für einen großen Arbeitsbereich ein lineares Modell die Realität häufig nur
unzureichend wiedergibt. Aus diesem Grund ist in den letzten Jahren ein stetig wachsendes Interesse
an praktisch einsetzbaren, theoretisch fundierten nichtlinearen prädiktiven Regelungsverfahren zu
beobachten. Gleichzeitig wurden erhebliche Fortschritte auf dem Gebiet der nichtlinearen prädikti-
ven Regelung erzielt (Mayne et al., 2000; Allgöwer et al., 1999; De Nicolao et al., 2000; Qin and
Badgwell, 2003; Chen and Allgöwer, 1998a; Rawlings, 2000; Allgöwer et al., 2004; Findeisen and
Allgöwer, 2001; Findeisen et al., 2003d). Jedoch gibt es noch eine Reihe von Problemen, die über-
wunden werden müssen, bevor die nichtlineare prädiktive Regelung in der Praxis so erfolgreich und
zuverlässig eingesetzt werden kann wie die lineare prädiktive Regelung. Zu den offenen Problemen
gehören unter anderem:

• Die effiziente und zuverlässige Lösung des auftretenden Optimalsteuerungsproblems in Echt-
zeit. Sie ist eines der Schlüsselelemente für die praktische Anwendung der nichtlinearen prädik-
tiven Regelung.

• Die Analyse der Robustheitseigenschaften der prädiktiven Regelung, sowie die Entwicklung
praktisch einsetzbarer, robust stabilisierender prädiktiver Regelungsverfahren.

• Die Entwicklung von prädiktiven Ausgangsregelungsverfahren, die die Stabilität des ge-
schlossenen Kreises garantieren können.

Im Rahmen dieser Arbeit werden Antworten und Lösungen zu einigen dieser offenen Fragen und
Probleme gegeben. Unter anderem werden effiziente Lösungsmethoden für das sich ergebende Opti-
malsteuerungsproblem aufgezeigt und Untersuchungen bezüglich der nominellen Stabilität, sowie der
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Berücksichtigung möglicher auftretender Verzögerungen, der Robustheit des geschlossenen Kreises,
und des Ausgangsregelungsproblems durchgeführt. Die erzielten Ergebnisse beschränken sich nicht
auf die nichtlineare prädiktive Regelung. Vielmehr sind die meisten Ergebnisse allgemein für Rege-
lungsverfahren gültig, die auf abgetasteten Zustandsinformationen und der Anwendung von open-

loop Eingangssignalen beruhen.

Grundlagen

Es wird angenommen, dass der zu stabilisierende Prozess durch ein gewöhnliches, zeitinvariantes
nichtlineares Differentialgleichungssystem der Form

ẋ(t) = f(x(t), u(t)), x(0) = x0 (I)

beschrieben wird. Hier ist x(t) ∈ X ⊆ R
n der Zustandsvektor und u(t) ∈ U ⊂ R

m der Eingangs-
vektor. Die Mengen U ist die Menge der zulässigen Eingangswerte und die Menge X beschreibt die
erlaubten Systemzustände. Es wird angenommen, dass U eine kompakte und X eine einfach zusam-
menhängende Menge ist. Bezüglich des Vektorfeldes f : R

n×R
m → R

n wird angenommen, dass
es lokal Lipschitz-stetig im Systemzustand x und stetig in u ist. Zusätzlich gelte (0, 0)∈X ×U und
f(0, 0) = 0.

Die Berechnung des Eingangssignals erfolgt nur an diskreten Abtastzeitpunkten ti. Bezüglich der Ab-
tastzeitpunkte wird angenommen, dass die Zeitspanne δi = ti+1−ti zwischen zwei Abtastzeitpunkten
ti und ti+1 endlich ist und nicht verschwindet.

In der prädiktiven Regelung ist das Eingangssignal, das zwischen den Abtastzeitpunkten open-loop

auf das System aufgeschaltet wird, im Allgemeinen durch die Lösung eines Optimalsteuerungspro-
blems der folgenden Form gegeben:

min
ū(·)

J(x̄(·), ū(·)) (IIa)

unter den Nebenbedingungen: ˙̄x(τ)=f(x̄(τ), ū(τ)), x̄(ti)=x(ti), (IIb)

ū(τ)∈U , x̄(τ)∈X τ ∈ [ti, ti + Tp], (IIc)

x̄(ti + Tp) ∈ E . (IId)

Hier ist J die betrachtete Kostenfunktion, die über dem Vorhersagehorizont Tp ausgewertet wird. Die
Größe x̄ stellt den vorhergesagten Zustandsverlauf des Systems (I) ausgehend vom Systemzustand
x(ti) unter dem Stellgrößenverlauf ū(·) über das Vorhersagefenster [ti, ti + Tp] dar. Die Unterschei-
dung zwischen den vorhergesagten Systemzuständen x̄ und dem realen Systemzustand x ist notwen-
dig, da diese sich sogar im nominellen Fall bei Verwendung eines endlichen Vorhersagehorizonts
unterscheiden. Die Endbedingung (IId) erzwingt, dass der letzte vorhergesagte Systemzustand in der
Endregion E liegt. Die Kostenfunktion J ist im Allgemeinen durch

J(x(·), u(·))=

∫ ti+Tp

ti

F (x(τ), u(τ))dτ + E(x(ti + Tp)) (IIe)
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gegeben. Hierbei ist F eine im Systemzustand x positiv definite Funktion, die oft auf ökologischen
und ökonomischen Betrachtungen beruht. Das Endgewicht E wird zusammen mit der Endbedin-
gung (IId) oft dazu genutzt, die Stabilität des geschlossenen Kreises zu erzielen oder die Regelgüte
zu verbessern. Das auf das System aufgeschaltete Eingangssignal ist durch die folgende Beziehung
definiert:

u(t) = ū?(t; x(ti)). (III)

Hier ist u?(·; x(ti)) das optimale Eingangssignal des Optimalsteuerungsproblems (II) für den Zustand
x(ti) zum unmittelbar vorhergegangenen Abtastzeitpunkt. Das angewendete Eingangssignal basiert
also auf einer wiederholten Lösung des Optimalsteuerungsproblems (II) zu den Abtastzeitpunkten ti.

Es existieren eine Reihe nichtlinearer prädiktiver Regelungsverfahren, bei denen durch geeignete
Wahl des Prädiktionshorizonts Tp, des Gewichtsterms F , des Endgewichts E und der Endregion E
die Stabilität des nominellen geschlossenen Kreises garantiert werden kann. Details hierzu können
zum Beispiel (Mayne et al., 2000; Allgöwer et al., 1999; Fontes and Magni, 2003; Chen and Allgö-
wer, 1998a; Findeisen et al., 2003d) entnommen werden.

Effiziente numerische Implementation

Für den praktischen Einsatz der nichtlinearen prädiktiven Regelung ist die effiziente Problemformu-
lierung und Lösung des auftretenden Optimalsteuerungsproblems in Echtzeit von erheblicher Bedeu-
tung. Eines der Hauptargumente gegen den praktischen Einsatz der nichtlinearen prädiktiven Rege-
lung ist, dass das Optimalsteuerungsproblem (II) für die meisten Regelungsprobleme nicht schnell
und zuverlässig genug gelöst werden kann (Qin and Badgwell, 2003). Im Rahmen dieser Arbeit wird
mit Hilfe von Simulationen und experimentellen Ergebnissen für die Regelung einer Destillations-
kolonne zur hochreinen Trennung von Methanol und n-Propanol exemplarisch nachgewiesen, dass
die Lösung des auftretenden Optimalsteuerungsproblems in Echtzeit auch mit der heute zur Verfü-
gung stehenden Rechenleistung möglich ist. Es ist dazu notwendig, vorhandene effiziente dynami-
sche Optimierungsverfahren an die speziellen Strukturen des Optimalsteuerungsproblems, das in der
nichtlinearen prädiktiven Regelung auftritt, anzupassen. Des Weiteren sollten nichtlineare prädikti-
ve Regelungsverfahren zum Einsatz kommen, die eine effiziente Lösung, zum Beispiel durch Ver-
meidung von langen Prädiktionshorizonten und strikten Endbedingungen, erlauben. Ein Beispiel für
ein geeignetes prädiktives Regelungsverfahren ist die so genannte quasi-infinite horizon nichtlinea-
re prädiktive Regelung (Chen and Allgöwer, 1998b). Das verwendete, speziell auf die Bedürfnisse
der prädiktiven Regelung angepasste, dynamische Echtzeitoptimierungsverfahren basiert auf einem
speziellen Mehrzielverfahren (Bock and Plitt, 1984; Bock, Diehl, Leineweber and Schlöder, 2000).
Dieses wurde im Rahmen einer Studie über die technische Realisierbarkeit (Diehl, Findeisen, Nagy,
Bock, Schlöder and Allgöwer, 2002; Diehl et al., 2001; Findeisen, Allgöwer, Diehl, Bock, Schlöder
and Nagy, 2000; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder, 2002) der nicht-
linearen prädiktiven Regelung am Institut für wissenschaftliches Rechnen der Universität Heidelberg
entwickelt (Diehl, 2002; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder, 2002).
Die erzielten Ergebnisse weisen nach, dass die für den Einsatz der prädiktiven Regelung zu Verfügung
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stehenden numerischen Lösungsverfahren und die heutzutage vorhandene Rechenleistung nicht mehr
der limitierende Faktor für einen praktischen Einsatz der nichtlinearen prädiktiven Regelung sind.

Stabilitätsbedingungen für Abtastregler

Zur Betrachtung des Einflusses von Störungen und Modellunsicherheiten, sowie des Ausgangs-
regelungsproblems erweist es sich als zweckmäßig, sich nicht nur auf die nichtlineare prädiktive
Lösung zu beschränken. Vielmehr ist es sinnvoll, allgemeine Abtastregelungen, die open-loop Ein-
gangssignale verwenden, zu betrachten. Zu diesem Zweck werden, basierend auf Ideen aus der
nichtlinearen prädiktiven Regelung, in einem ersten Schritt Stabilitätsbedingungen für Abtastre-
gelungen, die open-loop Eingangssignale verwenden, hergeleitet. Abbildung 2 zeigt den hierbei
betrachteten Aufbau. Ähnlich der prädiktiven Regelung wird davon ausgegangen, dass basierend auf

x(ti)
ẋ(t)=f(x(t), u(t))

x(t)

tti ti+1

uSD(t; x(ti), ti)δi

u

open-loop

Eingangsgenerator

Abbildung 2: Abtastregelung unter Verwendung von open-loop Eingangssignalen, die durch einen Eingangs-

generator uSD zu den Abtastzeiten ti erzeugt werden.

der Zustandsinformation zum Abtastzeitpunkt ti ein open-loop Eingangsgenerator ein Eingangssignal
erzeugt, das bis zum nächsten Abtastzeitpunkt auf das System aufgeschaltet wird. Der geschlossene
Kreis ist somit durch

ẋ(t) = f(x(t), uSD(t; x(ti), ti)), x(0) = x0 (IV)

gegeben. Hier bezeichnet uSD das durch den open-loop Eingangsgenerator zum unmittelbar vor dem
Zeitpunkt t liegenden Abtastzeitpunkt ti erzeugte Eingangssignal.

Basierend auf Ideen der nichtlineare prädiktive Regelung (Fontes, 2000b; Chen and Allgöwer, 1998b;
Jadbabaie et al., 2001) werden Bedingungen hergeleitet, die die Stabilität des geschlossenen Kreises
im Sinne von Konvergenz zu einer vorgegebenen Zielmenge garantieren. Insbesondere erlauben die
hergeleiteten Ergebnisse die Betrachtung von Systemen, die sich nur mit Hilfe von Rückführungen,
die unstetig als Funktion des Systemzustandes sind, stabilisieren lassen (Brockett, 1983; Fontes, 2003;
Clark, 2001; De Luca and Giuseppe, 1995; Astolfi, 1996; Ryan, 1994).

Im Gegensatz zu herkömmlichen Betrachtungen der Abtastregelung2, in denen der Eingang zwischen
den Abtastzeitpunkten konstant gehalten wird, wird in dieser Arbeit davon ausgegangen, dass das

2Für einen Überblick über Arbeiten auf dem Gebiet der Abtastregelung siehe zum Beispiel (Nes̆ić and Teel, 2001;
Nes̆ić and Laila, 2002; Chen and Francis, 1995)
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Ausgangssignal (nahezu) kontinuierlich implementiert werden kann. Ein Argument für diese Be-
trachtung ist, dass bei langen Abtastzeiten δi, die beispielsweise durch langsame Zustands- oder Aus-
gangsmessungen verursacht werden, die Fixierung des Eingangssignals auf einen konstanten Wert zu
erheblichen Einbußen der Regelgüte führen kann (Nes̆ić and Teel, 2001).

Die hergeleiteten Bedingungen werden beispielhaft dazu verwendet, Stabilitätsaussagen für ein ver-
allgemeinertes nichtlineares prädiktives Regelungsverfahren herzuleiten. Dieses erlaubt unter ande-
rem die Betrachtung der Stabilisierung einer Zielmenge sowie die Betrachtung unstetige Eingans-
signale. Ferner wird nachgewiesen, dass aus asymptotisch stabilisierenden, lokal Lipschitz-stetigen
Rückführungen durch Vorwärtssimulation des geschlossenen Kreises eine stabilisierende Abtastrege-
lung erzeugt werden kann.

Des Weiteren wird die Problematik der in der Praxis häufig auftretenden Mess-, Rechen-, und Kom-
munikationsverzögerungen betrachtet. Hierfür werden einfach zu implementierende Methoden aufge-
zeigt, die im Fall der Abtastregelung die Berücksichtigung solcher Verzögerungen ermöglichen. Die
Berücksichtigung von Verzögerungen ist insbesondere bei der nichtlinearen prädiktiven Regelung
wichtig, da die Lösung des auftretenden Optimalsteuerungsproblems oftmals eine nicht zu vernach-
lässigende Zeit erfordert und somit zu Verzögerungen bei der Bereitstellungen des neuen Eingangs-
signals führt. Wird diese Rechenverzögerung nicht berücksichtigt, kann es leicht zur Instabilität des
geschlossenen Kreises kommen (Findeisen and Allgöwer, 2004a). Die erzielten Ergebnisse werden
anhand einer Simulationsstudie für die Regelung eines Rührkesselreaktors verifiziert.

Analyse der Robustheit von Abtastreglern

Die Analyse des Einflusses von externen Störungen und Modellfehlern ist für den praktischen Ein-
satz von Abtastregelungen, insbesondere für die nichtlineare prädiktive Regelung, von erheblicher
Bedeutung. Die Bestimmung des open-loop Eingangssignals nur an den Abtastzeitpunkten hat zwar
einerseits den Vorteil, dass die Zustandsinformation nur an den Abtastzeitpunkten vorliegen muss, an-
dererseits wird die Zustandsinformation natürlich auch nur zu den Abtastzeitpunkten zurückgeführt.
Im geschlossenen Kreis kann somit auf Störungen nur zu den Abtastzeitpunkten reagiert werden. Da
für bestimmte Modellklassen schon beliebig kleine Fehler zu Instabilität des geschlossenen Kreises
führen können (Grimm et al., 2003a; Magni et al., 2003; Findeisen et al., 2003d), ist es wichtig zu
untersuchen, unter welchen Bedingungen Abtastregelungen inhärente Robustheitseigenschaften auf-
weisen. Im Fall der nichtlinearen prädiktiven Regelung sind solche Untersuchungen wichtig, da bisher
bekannte Reglerentwürfe, die eine explizite Berücksichtigung von Störungen und Modellfehlern er-
lauben, praktisch nicht implementiert werden können (Fontes and Magni, 2003; Chen et al., 1997; Ma-
gni, Nijmeijer and van der Schaft, 2001).

Zur Untersuchung des Einflusses von externen Störungen und Modellfehlern geht man von einem
stabilisierenden Abtastregler uSD aus, der das System in einem Einzugsbereich R stabilisiert und
eine lokal Lipschitz-stetige Wertefunktion bzw. ”Ljapunowfunktion” besitzt. Als einfachster Fall wird
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zunächst der Einfluss einer additiven Störung der Form

ẋ(t) = f(x(t), uSD(t; x(ti), ti)) + p(t). (V)

betrachtet. Hier stellt p(t) den Störeinfluss dar. Für diese Störung wird nachgewiesen, dass für feste,
aber beliebige kompakte Mengen Ωγ , Ωc0 , Ωc, mit Ωγ ⊂ Ωc0 ⊂ Ωc ⊂R und die durch Höhenlinien
der Wertefunktion begrenzt werden (siehe Abbildung 3), immer eine Schranke pmax für die erlaubte
Störung p existiert, so dass gilt: Wenn die Störung p für alle ti die Bedingung

∥
∥
∥
∥

∫ ti+τ

ti

p(s)ds

∥
∥
∥
∥
≤ pmaxτ ∀τ ∈ [0, ti+1 − ti], (VI)

erfüllt, so folgt, dass für alle Anfangsbedingungen x0 ∈ Ωc0 : 1.) die Lösung von (V) für alle Zeiten
existiert, 2.) x(t) die Menge Ωc nicht verlässt, 3.) x(ti)∈Ωc0 ∀i ≥ 0, und 4.) es eine endliche Zeit Tγ

gibt, so dass x(τ)∈Ωγ ∀τ ≥ Tγ . Eine Verallgemeinerung auf Störungen, die von den Zuständen und

Ωc0

Ωc
x(0)

Ωγ

R

Abbildung 3: Menge der Anfangsbedingungen Ωc0 , maximal zulässige Menge Ωc, Konvergenzmenge Ωγ und

nomineller Einzugsbereich des Abtastreglers R.

dem Eingangssignal abhängen, ist möglich, solange die Bedingung (VI) erfüllt ist. Dieses Ergebnis ist
von praktischem Interesse, da es nachweist, dass hinreichend kleine Störungen im Sinne praktischer
Stabilität toleriert werden können. Unter weiteren Annahmen ist es möglich, dieses Ergebnis auf
Störungen auszuweiten, die direkt auf das Eingangssignal wirken, d.h. bei denen der geschlossene
Kreis durch

ẋ(t) = f(x(t), uSD(t; x(ti), ti) + v(t)) (VII)

beschrieben wird, wobei v der auftretenden Eingangsstörterm ist. Das erzielte Ergebnis erlaubt bei-
spielsweise die Robustheit bezüglich kleiner numerischer Fehler bei der Lösung des Optimalsteue-
rungsproblems zu untersuchen und die Robustheit im Fall schneller, bei der Modellbildung ver-
nachlässigter Aktuatordynamiken sicherzustellen. In ähnlicher Weise ist es möglich, die Robustheit



XVI Deutsche Kurzfassung

von Abtastregelungen bezüglich Fehlern bei der Zustandsschätzung beziehungsweise Messstörungen
nachzuweisen. Dies legt die Grundlage für Ausgangsregelungsverfahren, die semi-regionale prakti-
sche Stabilität des geschlossenen Kreises erzielen.

Ausgangsregelung unter Verwendung von Abtastreglern

Für die bisherigen Betrachtungen wurde angenommen, dass die vollständige Zustandsinformation
zur Verfügung steht. In der Praxis sind jedoch oft nicht alle Zustände messbar. Vielmehr stehen nur
bestimmte Messungen zur Verfügung, die durch

y = h(x, u) (VIII)

gegeben sind. In der Praxis wird dieses Problem meist durch Einsatz des so genannten certainty-

equivalence Prinzips gelöst, d.h. für die Rückführung wird anstatt des realen Systemzustandes ein mit
Hilfe eines geeigneten Beobachters geschätzter Systemzustand verwendet. Da es für nichtlineare Sy-
steme, im Gegensatz zu linearen Systemen, kein allgemeingültiges Separationsprinzip gibt, kann aus
der getrennten Stabilität des verwendeten Beobachters sowie des Abtastreglers nicht die Stabilität des
geschlossenen Kreises gefolgert werden. Aus diesem Grund werden für den Fall einer lokal Lipschitz-
stetigen Wertefunktion Stabilitätsbedingungen an den verwendeten Beobachter hergeleitet, die semi-
regionale praktische Stabilität des geschlossenen Kreises garantieren. Die wesentliche Anforderung
an den verwendeten Beobachter ist hierbei, dass für jeden noch so kleinen (erwünschten) maximalen
Beobachterfehler und jede noch so kleine Konvergenzzeit Beobachterparameter existieren, so dass der
Beobachterfehler nach der Konvergenzzeit diesen Beobachterfehler unterschreitet. Im Allgemeinen
ist diese Anforderung nicht erfüllt. Jedoch existieren eine Reihe von Beobachterentwurfsverfahren,
die dies garantieren. Beispiele sind klassische high-gain Beobachter (Tornambè, 1992), so genannte
moving horizon Beobachter mit Kontraktionsnebenbedingung (Michalska and Mayne, 1995), Beob-
achter, die eine endliche Konvergenzzeit garantieren (Drakunov and Utkin, 1995; Engel and Kreis-
selmeier, 2002; Menold et al., 2003), sowie Beobachter, die eine lineare Fehlerdynamik aufweisen
und bei der die Pole beliebig festgelegt werden können. Diese können zum Beispiel auf Normal-
formbetrachtungen und einer Ausgangsaufschaltung beruhen (Bestle and Zeitz, 1983; Krener and
Isidori, 1983). Die erzielten Ergebnisse können, ähnlich dem Fall der nicht abgetasteten Zustands-
rückführung (Teel and Praly, 1995; Atassi and Khalil, 1999), als ein spezielles Separationsprinzip für
die Abtastregelung mit open-loop Eingangssignalen unter Verwendung von Zustandsbeobachtern be-
trachtet werden. Zwar sind die erzielten Ergebnisse nicht direkt zur Auslegung eines Ausgangsreglers
geeignet, jedoch untermauern sie theoretisch, dass der geschlossene Kreis semi-regionale praktische
Stabilität aufweisen kann, wenn der verwendete Abtastregler eine lokal Lipschitz-stetige Wertefunk-
tion aufweist und ein entsprechender Beobachter zum Einsatz kommt.

Die hergeleiteten Ergebnisse werden mit Hilfe von Simulationsergebnissen für zwei Beispielsysteme,
der Stabilisierung eines Pendels auf einem Wagen sowie der Regelung eines Bioreaktors veranschau-
licht. In beiden Fällen werden klassische high-gain Beobachter sowie ein nichtlinearer prädiktiver
Regler verwendet.
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Zusammenfassung

Ausgangspunkt der vorliegenden Arbeit ist die Frage, inwieweit die nichtlineare prädiktive Regelung
prinzipiell in der Praxis, d.h. unter nicht idealisierten Bedingungen, anwendbar ist. Hierzu wurde zum
einen nachgewiesen, dass das in der nichtlinearen prädiktiven Regelung auftretenden Optimalsteue-
rungsprobleme unter Verwendung geeigneter Lösungsverfahren hinreichend schnell gelöst werden
kann.

Zum anderen wurde die Frage der inhärenten Robustheit sowie des Ausgangsregelungsproblems im
Rahmen einer verallgemeinerten Betrachtungsweise, nämlich der Abtastregelung unter Verwendung
von open-loop Eingangssignalen, untersucht. Diese Betrachtungsweise erlaubt eine elegante Unter-
suchung entscheidender Fragen, die sich bei der praktischen Umsetzung der nichtlinearen prädikti-
ven Regelung ergeben. Neben der Analyse der inhärenten Robustheit wurde insbesondere ein neuer
Zugang zu dem bisher nur unbefriedigend gelösten, praktisch bedeutsamen Problem der Ausgangs-
regelung aufgezeigt. Die meisten der vorgestellten Ergebnisse sind nicht auf die prädiktive Regelung
beschränkt. Vielmehr sind sie unter gewissen Voraussetzungen allgemein auf Abtastregelungen unter
Verwendung von open-loop Eingangssignalen übertragbar.
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Chapter 1

Introduction

Typical objectives for controller design are the stability of the closed-loop while minimizing a desired
cost function and satisfying constraints on the process variables. One classical approach taking these
objectives directly into account is optimal feedback control. However, as is well known, it is often
very hard, if not impossible, to obtain a closed solution for the optimal control problem describing
the feedback. One possibility to circumvent the closed solution is the application of model predictive
control (MPC), often also referred to as receding horizon control or moving horizon control. Basi-
cally, in model predictive control an optimal control problem is solved for the current system state.
The first part of the resulting optimal input signal is applied open-loop to the system until the next
recalculation instant, at which the optimal control problem for the new system state is resolved. Since
the optimal control problem must only be solved for the current system state, the solution is much
easier to obtain. An often intractable problem is replaced by a tractable one.

In general one distinguishes between linear and nonlinear model predictive control (NMPC). Linear
MPC refers to MPC schemes that are based on linear models of the system and in which linear
constraints on process variables and a quadratic cost function can be used. NMPC refers to MPC
schemes that use nonlinear models for prediction and that allow to consider a non-quadratic cost-
functional and nonlinear constraints on the process variables. By now linear MPC is widely used
in industrial applications (Qin and Badgwell, 2000; Qin and Badgwell, 2003; García et al., 1989;
Morari and Lee, 1999; Froisy, 1994). For example (Qin and Badgwell, 2003) report more than 4500
applications of linear MPC spanning a wide range from the production of chemicals to aerospace
industries. Also many theoretical and implementation issues of linear MPC have been studied and are
well understood (Lee and Cooley, 1996; Morari and Lee, 1999; Mayne et al., 2000).

Increasing product quality specifications and productivity demands, tighter environmental regulations
and demanding economical considerations require the operation of processes over a wide range of
operating conditions and often near the boundary of the admissible region. Under these conditions
linear models are often not sufficient to describe the process dynamics adequately and nonlinear
models must be used. This inadequacy of linear models, together with the desire of many companies
to use already available nonlinear models for control, is one of the motivations for the increasing
interest in nonlinear model predictive control.
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In recent years much progress in the area of NMPC has been achieved, for details see Chapter 2
and (Mayne et al., 2000; Allgöwer et al., 1999; De Nicolao et al., 2000; Qin and Badgwell, 2003; Chen
and Allgöwer, 1998a; Rawlings, 2000; Allgöwer et al., 2004; Findeisen and Allgöwer, 2001; Find-
eisen et al., 2003d). However, there remain a series of open questions and hurdles that must be
overcome before a theoretically well founded practical application of NMPC is possible. Examples
of open questions are the efficient and reliable online implementation of NMPC, the analysis of the
inherent robustness properties of NMPC, the development of robust NMPC approaches, the compen-
sation of delays, and the design of output-feedback NMPC approaches. Answers and solutions to
some of these questions are provided in this thesis.

1.1 NMPC and Sampled-data Open-loop Feedback

We focus on NMPC for continuous time systems subject to sampled state information; i.e. we con-
sider the stabilization of continuous time systems by repeatedly applying open-loop input trajec-
tories obtained from the solution of an optimal control problem at discrete recalculation instants

(compare Figure 1.1.) In the following we refer to this NMPC implementation as sampled-data

tti ti+1

x(ti)

δi

ẋ(t)=f(x(t), u(t))
x(t)

NMPC

ū?(·; x(ti))

Figure 1.1: Sampled-data open-loop state-feedback using NMPC. The recalculation instants are denoted by t i,

and ū?(·;x(ti)) is the optimal open-loop input provided by the NMPC controller at the time ti based on the

state information x(ti).

open-loop NMPC. The notion of sampled-data open-loop feedback is explicitly used, since we do
not consider the use of sample-and-hold elements at the input side, as classically considered in
sampled-data feedback control (Chen and Francis, 1995; Aström and Wittenmark, 1997; Franklin
et al., 1998; Nes̆ić and Teel, 2001). Note that in difference to NMPC for discrete time systems
(see e.g. (Mayne et al., 2000; Allgöwer et al., 1999; De Nicolao et al., 2000)) or instantaneous
NMPC (Mayne et al., 2000), where the optimal input is recalculated at all times (no open-loop in-
put signal is applied to the system), in sampled-data open-loop NMPC the behavior in between the
recalculation instants must be explicitly taken into account. Sample-and-hold implementations are
actually a subclass of sample-data open-loop NMPC implementations.

While instantaneous NMPC formulations, discrete time NMPC formulations, or sampled-data NMPC
formulations considering a fixed input in between the recalculation times, are often appealing from a
theoretical side, there are a series of practical and theoretical reasons for the application of sampled-
data open-loop NMPC:
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• Discrete time NMPC formulations require a discrete time process model. However, to capture
the inherent nonlinearity of a process sufficiently, it is often necessary to use a first principle
modeling approach, which typically leads to a set of nonlinear differential or nonlinear differ-
ential algebraic equations. Furthermore, for many processes first principle nonlinear models
are already available, and companies desire to use these models directly for control. Obtaining
a suitable discrete time model from continuous time models, without an implicit solution of the
underlying differential equations, is often impossible.

• Fixing the input in between recalculation instants can lead to a drastic performance limitation
or even instability, if the time between the recalculation instants is long. Often it is assumed that
the recalculation time can be made sufficiently small to avoid such effects. However, this it not
always possible, for example in the case of rarely available state and measurement information
due to slow sensors, or due to extensive preprocessing. In such cases applying an open-loop
input signal instead of a fixed input in between the recalculation times allows to increase the
performance of the closed-loop.

• A sampled-data formulation of NMPC is practically often necessary, since the solution of the
underlying optimal control problem does typically require a non-negligible amount of time,
making an instantaneous implementation impossible.

• As is shown, sampled-data formulations allow a simple consideration of measurement, compu-
tational, and communication delays which are often present in practice. Not taking such delays
into account can significantly decrease the performance or might even lead to instability.

To facilitate a theoretically well founded practical application of NMPC, it is important to perform a
careful analysis of implementational and computational aspects of sampled-data open-loop NMPC.
Even so a series of issues related to sampled-data open-loop NMPC have been considered by now,
there remain many issues which have not been addressed satisfactorily or which have not been ad-
dressed at all.

The goal of this thesis is to investigate and propose solutions to some crucial open theoretical and
practical aspects of sampled-data open-loop NMPC. Specifically we consider questions of:

• An efficient solution of the optimal control problem appearing in sampled-data open-loop
NMPC.

• The derivation of generalized stability conditions for open-loop sampled-data feedback, includ-
ing sampled-data open-loop NMPC as a special case.

• The inherent robustness properties of sampled-data open-loop feedbacks with respect to small
external disturbances and model-plant mismatch, and the implications of these properties for
NMPC.

• The derivation of sampled-data open-loop output-feedback schemes allowing to achieve non-
local stability results.
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1.2 Contribution

The area of NMPC can be considered as very fertile and has experienced a rapid development over the
recent fifteen years. Nevertheless, there are a number of distinct contributions and novel viewpoints
which form the core of this thesis. They contribute to the following four subgroups:

Real-time feasibility of NMPC
• A proof of concept that NMPC can be applied to realistically sized, practically relevant control

problems is given. To achieve this, specially tailored numerical solution strategies together with
NMPC formulations requiring a reduced computational load are used.

• The experimental verification of the derived methods by means of the control of a high-purity
distillation column.

Generalized stability conditions for sampled-data open-loop state-feedback
• The derivation of generalized stability conditions for open-loop sampled-data feedback, mo-

tivated by ideas from stability proofs of NMPC, but which are not limited to sampled-data
open-loop NMPC.

• The derivation of a new feedforward simulation based technique allowing to adapt any instan-
taneous, locally Lipschitz continuous state-feedback to the sampled-data open-loop feedback
case, without loss of stability.

• The statement of a new, generalized stability theorem for sampled-data open-loop NMPC,
which allows to consider the stabilization with respect to a set.

• The derivation of delay compensation techniques for sampled-data open-loop feedback retain-
ing stability and performance of the closed-loop.

Inherent robustness properties of sampled-data open-loop state-feedback
• Analyses of the inherent robustness properties of sampled-data open-loop feedback for locally

Lipschitz value/decreasing functions.

• The derivation of stability results with respect to small uncertainties and model plant mismatch
(Section 5). Specific examples are the robustness with respect to small measurement errors
and the robustness with respect to input disturbances or numerical errors in the solution of the
optimal control problem.

Sampled-data open-loop output-feedback approaches
• The derivation of a novel output-feedback result for sampled-data open-loop feedback. Specif-

ically stability conditions guaranteeing that the combination of a sampled-data open-loop state-
feedback and a state observer achieve semi-regional practical stability are derived.

The core of this thesis is formed by the sampled-data open-loop feedback considerations presented
in Chapter 4-5, and the output-feedback results presented in Chapter 6. Even so most of the derived
results are clarified considering specifically NMPC, they are not limited to sampled-data open-loop
NMPC. They rather apply to a wide class of sampled-data open-loop feedback strategies.
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1.3 Thesis Outline

The thesis is structured as follows:

Chapter 2 provides an introduction and a review of existing work in the area of NMPC. The chapter
is not intended to provide an overall coverage of NMPC. It is rather thought to provide the conceptual
and notational basis and motivation for the considerations later on. Special emphasis is put on the dif-
ferences between sampled-data open-loop feedback, the main properties, advantages and drawbacks
of NMPC, implementation related issues, and system theoretical aspects of NMPC. The presentation
is based on the work presented in (Findeisen et al., 2003d; Findeisen et al., 2003e; Findeisen and
Allgöwer, 2001; Allgöwer et al., 2004; Allgöwer et al., 2000).

Chapter 3 summarizes results related to an efficient solution of the optimal control problem ap-
pearing in NMPC. It is shown that a real-time application of NMPC is possible if a “symbiosis” of
specially tailored dynamic optimization strategies and NMPC schemes with a reduced computational
load are used. After a short review of general solution methods for the optimal control problem
appearing in NMPC, a specially tailored dynamic optimization strategy based on multiple shooting
methods is outlined. This strategy was developed in the context of a computational feasibility study
of NMPC (Nagy, Findeisen, Diehl, Allgöwer, Bock, Agachi, Schlöder and Leineweber, 2000; Find-
eisen, Allgöwer, Diehl, Bock, Schlöder and Nagy, 2000; Bock, Diehl, Schlöder, Allgöwer, Findeisen
and Nagy, 2000; Diehl, 2002; Diehl, Findeisen, Nagy, Bock, Schlöder and Allgöwer, 2002; Diehl
et al., 2001; Findeisen, Nagy, Diehl, Allgöwer, Bock and Schlöder, 2001; Findeisen, Diehl, Uslu,
Schwarzkopf, Allgöwer, Bock, Schlöder and Gilles, 2002; Diehl, Findeisen, Schwarzkopf, Uslu,
Allgöwer, Bock and Schlöder, 2002; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and
Schlöder, 2003). The efficiency of the outlined method is underpinned considering the control of
a high-purity distillation column.

In Chapter 4 the stabilization of continuous time systems using sampled-data open-loop feedback
is considered. In particular, general stability conditions for sampled-data open-loop feedback are
derived, which are an expansion of the results presented in (Findeisen and Allgöwer, 2004d). The
results are motivated by ideas utilized in sampled-data open-loop NMPC. However, they are not
limited to NMPC. They are rather applicable to a wide class of sampled-data open-loop feedbacks.
Notably, the derived stability results allow for varying recalculation intervals and the consideration
of constraints on inputs and states. The results are exemplified considering a generalized stability
result for sampled-data open-loop NMPC and a new approach for deriving stabilizing sampled-data
open-loop feedbacks based on stabilizing instantaneous feedback laws. Furthermore, the practically
important question how delays can be considered in sampled-data open-loop feedback is examined.
Based on the results presented in (Findeisen and Allgöwer, 2004a; Findeisen and Allgöwer, 2004d),
two new delay compensation techniques for the compensation of measurement and computational
delays retaining nominal stability are presented. The derived results are exemplified considering the
control of a continuous stirred tank reactor.

The question whether sampled-data open-loop feedback possesses inherent robustness properties is
considered in Chapter 5. It is shown that, under certain Lipschitz conditions, sampled-data open-loop
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feedbacks possess inherent robustness properties with respect to additive disturbances in the differen-
tial equations, to input disturbances, and to measurement uncertainties. The derived robustness results
have a series of direct implications. With respect to NMPC they underpin the intuition that small er-
rors in the optimal input trajectory, e.g. resulting from an approximate numerical solution, can be
tolerated. The results are an extension of the results presented in (Findeisen et al., 2003e; Findeisen
et al., 2003c) for sampled-data open-loop NMPC.

The inherent robustness properties of sampled-data open-loop feedbacks paves the way to sampled-
data open-loop output-feedback schemes that achieve semi-regional practical stability (Chapter 6).
For a broad class of sampled-data open-loop feedback controllers, conditions on the facilitated
state observer are derived guaranteeing that the closed-loop is semi-regional practically stable. It is
shown that sufficient conditions to achieve semi-regional practical stability are that the used observer
achieves a sufficiently fast convergence of the estimation error, and that the value function of the used
sampled-data open-loop feedback is locally Lipschitz. The condition on the observer error conver-
gence is in general very stringent. However, a series of observers such as high-gain observers, moving
horizon observers and observers with finite convergence time do satisfy it. The results presented
are generalizations of the results for the NMPC case as presented in (Imsland, Findeisen, Bullinger,
Allgöwer and Foss, 2003; Findeisen et al., 2003b; Findeisen et al., 2003d; Findeisen et al., 2003c).
The resulting performance and stability of the closed-loop are discussed considering two example
systems, the control of a pendulum car system and the control of a mixed-culture bioreactor.

Chapter 7 summarizes the achieved results and provides an outlook on possible future research di-
rections and open questions in the area of sampled-data open-loop feedback, especially NMPC.
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Chapter 2

A Brief Review of Nonlinear Model
Predictive Control

In this chapter we review the basic principle of NMPC for continuous time systems, outline the key
advantages and disadvantages of this control approach, and discuss the differences between sampled-
data open-loop NMPC and instantaneous NMPC. This chapter does not provide a complete review of
NMPC; it is rather intended to provide the basis for the following chapters. For more comprehensive
reviews the reader is referred to (Mayne et al., 2000; De Nicolao et al., 2000; Allgöwer et al., 1999;
Chen and Allgöwer, 1998a; Rawlings, 2000; Allgöwer et al., 2004; Findeisen and Allgöwer, 2001;
Findeisen et al., 2003d). Especially, we do not consider the stabilization of discrete time systems
using NMPC. Detailed discussion in this respect can be found in (Mayne et al., 2000; De Nicolao
et al., 2000; Rawlings, 2000; Allgöwer et al., 1999; Rawlings et al., 1994).

2.1 Basic Principle of Model Predictive Control

The input applied in model predictive control is given by the repeated solution of a (finite) horizon
open-loop optimal control problem subject to the system dynamics, input and state constraints. Based
on measurements obtained at a time t, the controller predicts the dynamic behavior of the system
over the so called control/prediction horizon Tp and determines the input such that an open-loop
performance objective is minimized1. Under the assumption that the prediction horizon spans to
infinity and that there are no disturbances and no model plant mismatch, one could apply the resulting
input open-loop to the system and achieve (under certain assumptions) convergence of the system
states to the origin. However, due to external disturbances, model plant mismatch and the use of finite
prediction horizons the actual predicted state and the true system state differ. Thus, to counteract this
deviation and to suppress the disturbances it is necessary to incorporate feedback. In model predictive
control this is achieved by applying the obtained optimal open-loop input only until the recalculation

1For simplicity of presentation we assume that the prediction and control horizon, as sometimes considered (Morari
and Lee, 1999; Qin and Badgwell, 2000; Magni, De Nicolao and Scattolini, 2001b), coincide.
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time tr, at which the whole process – prediction and optimization – is repeated (compare Figure 2.1),
thus moving the prediction horizon forward. The whole procedure can be summarized as follows:

closed-loop

state x

closed-loop

input u

closed-loop

state x

closed-loop

input u

control/prediction horizon Tp control/prediction horizon Tp

predicted state x̄ predicted state x̄

t tr t tr tr + Tp

recalculation time trrecalculation time t

open-loop input ūopen-loop input ū

t + Tp

Figure 2.1: Principle of model predictive control.

1. Obtain estimates of the current state of the system.

2. Obtain an admissible optimal input by minimizing the desired cost function over the prediction
horizon using the system model and the current state estimate for prediction.

3. Implement the obtained optimal input until the next sampling instant.

4. Continue with 1.

2.2 Basic Mathematical Formulation of NMPC

We consider the following nonlinear system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ X0 (2.1)

subject to the input and state constraints

u(t) ∈ U , x(t) ∈ X , ∀t ≥ 0, (2.2)

where x(t) ∈ X ⊆ R
n is the system state, u(t) ∈ U ⊂ R

m is the input applied to the system.
Here the set of possible inputs is denoted by U , the set of feasible states is denoted by X , and the
set of considered initial conditions is denoted by X0 ⊆ R

n. With respect f we assume that f :

R
n × R

m → R
n it is continuous, satisfies f(0, 0) = 0, and is locally Lipschitz in x. With respect to

the sets X , X0, U we assume that U ⊂ R
m is compact, X ⊆ R

n is simply connected, X0 ⊆ X , and
(0, 0) ∈ X ×U . Thus, the origin is a stationary point for (2.1).We furthermore denote the solution
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of (2.1) (if it exists) starting at a time t1 from a state x(t1), applying an input u : [t1, t2] → R
m by

x(τ ; x(t1), u(·)), τ ∈ [t1, t2], i.e.

x(τ ; x(t1), u(·)) = x(t1) +

∫ τ

t1

f(x(s), u(s))ds ∀τ ∈ [t1, t2]. (2.3)

In NMPC the feedback is defined via the repeated solution of an open-loop optimal control problem.
The open-loop optimal control problem to solve is often formulated as

min
ū(·)

J(x̄(·), ū(·)) (2.4a)

subject to: ˙̄x(τ)=f(x̄(τ), ū(τ)), x̄(t)=x(t), (2.4b)

ū(τ)∈U , τ ∈ [t, t + Tp] (2.4c)

x̄(τ)∈X , τ ∈ [t, t+ Tp], (2.4d)

x̄(t + Tp) ∈ E (2.4e)

where the cost functional J is defined over the prediction horizon Tp

J(x(·), u(·))=

∫ t+Tp

t

F (x(τ), u(τ))dτ + E(x(t + Tp)) (2.4f)

in terms of the stage cost F and a terminal penalty term E which specify the desired performance.

The bar denotes internal controller variables. The distinction between the real system variables and
the variables in the controller is necessary, since even in the nominal case the predicted values are
not the same as the actual closed-loop values. This difference is due to the re-optimization (over the
moving finite horizon Tp).

The stage cost F often arises from economical, ecological, or safety considerations. Often a quadratic
stage cost function is used, i.e. F (x, u) = xTQx + uTRu, with weighting matrices Q > 0 and
R ≥ 0. The terminal penalty term E together with the terminal region constraint (2.4e), where E
denotes the so-called terminal set around the origin, are typically used to enforce stability of the
closed-loop, see Section 2.5.1 and Chapter 4. The terminal penalty term E typically penalizes the
distance of the last predicted state to the origin. With respect to the stage cost F, we assume that
F : R

n × R
m →R is continuous, satisfies F (0, 0)= 0, and is lower bounded by a class K-function2

αF , i.e. αF (x) ≤ F (x, u).

In the following, optimal solutions of the dynamic optimization problem (2.4) are denoted by a su-
perscript ?. For example the optimal input (assuming that it exists) that minimizes (2.4) starting from
x(t) is denoted by ū?(·; x(t)) : [t, t + Tp] → R

m. The input applied to the system is based on the
optimal input u?, as explained in the next section.

The optimal cost of (2.4) as a function of the state is referred to as value function and is given by

V (x(t)) = J(x(·; x(t), ū?(·; x(t))), ū?(·; x(t))). (2.5)

2A continuous function α : [0,∞) → [0,∞) is a class K function, if it is strictly increasing and α(0) = 0.
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The value function plays a crucial role in the stability considerations of NMPC.

Depending on how “often” the optimal control problem (2.4) is recalculated, different versions of
NMPC exist. If the open-loop is solved at all time instants we refer to it as instantaneous NMPC. If
the dynamic optimization is solved only at disjoint recalculation instants and if the resulting optimal
control signal is implemented open-loop in between, the resulting scheme is referred to as sampled-

data open-loop NMPC. Both schemes have different theoretical as well as practical characteristics.

2.2.1 Instantaneous NMPC

We refer to NMPC schemes that apply at every time instant the optimal control problem (2.4) as
instantaneous NMPC:

Definition 2.1 (Instantaneous NMPC)
The applied input in instantaneous NMPC is given by

u(x(t)) = ū?(t; x(t)), (2.6)

leading to the nominal closed-loop system

ẋ(t) = f (x(t), ū?(t; x(t))) . (2.7)

Instantaneous NMPC schemes have the advantage that the system (2.7) is purely continuous time.
Thus, standard Lyapunov stability definitions and standard stability result can be utilized. However,
also certain problems arise. For example, if the open-loop optimization provides a discontinuous
input in terms of the state, the solution of the differential equation might not be defined in the classical
Carathéodory sense, since the right-hand side of the differential equation can be discontinuous and
switch infinitely fast near “singular” points. More details can be found in (Fontes, 2003; Fontes,
2000b; Michalska and Vinter, 1994). One advantage of instantaneous NMPC is that under certain
regularity and continuity assumptions it inherits well known stability properties of optimal control,
i.e. it possesses a sector gain margin of (1/2,∞) to static input nonlinearities similar to the linear
quadratic regulator (Chen and Shaw, 1982; Magni and Sepulchre, 1997). The inherent robustness
of instantaneous NMPC can for example be used to derive an output-feedback instantaneous NMPC
scheme using high-gain observers (Imsland, Findeisen, Bullinger, Allgöwer and Foss, 2003).

While instantaneous NMPC is theoretically appealing, often it can not be applied in practice, since
the numerical solution of the corresponding optimal control problem requires some non negligible
computation time. While in principle short “delays” (and optimization errors) can be tolerated (Mayne
and Michalska, 1990), the longer the necessary computation time, the more undesirable instantaneous
NMPC becomes.

2.2.2 Sampled-data Open-loop NMPC

In sampled-data open-loop NMPC the optimal control problem (2.4) is only solved at fixed recalcu-
lation instants. Between the recalculation instants the optimal input is applied open-loop. We denote
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the recalculation instants by ti. Often the time between the recalculations is assumed to be constant.
However, for practical reasons it might be necessary to consider varying recalculation times. For
example the computation time available for the solution of the open-loop optimal control problem, as
well as the availability of state information are often determined externally and might vary. Thus, we
consider in this thesis that the recalculation instants ti are given by a partition π of the time axis3.

Definition 2.2 (Partition)
A partition is a series π = (ti), i∈N of (finite) positive real numbers such that t0 = 0, ti < ti+1

and ti → ∞ for i→ ∞. Furthermore, π̄ = supi∈N
(ti+1− ti) denotes the upper diameter (longest

recalculation time) of π and π = inf i∈N(ti+1−ti) denotes the lower diameter (shortest recalculation

time) of π.

Whenever t and ti appear together, ti should be taken as the closest previous recalculation instant with
ti ≤ t. Whenever ti and ti+k, k ∈ N appear together, ti+k denotes the kth successor element of ti in
the series π. For all considerations in this thesis we assume that the upper and lower diameter of π
are finite. For practical applications this assumption is always satisfied.

For sake of brevity we denote in the following the time between two recalculation instants as recalcu-
lation time:

Definition 2.3 (Recalculation time δi)
The recalculation time corresponding to any ti ∈ π is defined as

δi = ti+1 − ti. (2.8)

Whereas in instantaneous NMPC the optimal control problem is solved at all times, in sampled-data
open-loop NMPC it is only solved at the recalculation instants.

Definition 2.4 (Sampled-data Open-loop NMPC)
The applied input in sampled-data open-loop NMPC is given by repeated solutions of the optimal

control problem (2.4)
u(t) = ū?(τ ; x(ti)). (2.9)

Furthermore, the nominal closed-loop system is given by

ẋ(t) = f (x(t), ū?(t; x(ti))) . (2.10)

Thus, only at the recalculation instants ti the applied open-loop u is recalculated.

2.3 Properties, Advantages and Drawbacks of NMPC

Ideally one would like to use an infinite prediction horizon, i.e. Tp in (2.4f) set to ∞, since this
would in the nominal case allow to minimize the overall cost. However, solving a nonlinear optimal

3The notation used is similar to the one used in (Clarke et al., 1997; Marchand and Alamir, 2000).
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control problem over an infinite horizon is often computationally not feasible. Thus typically a finite
prediction horizon is used. In this case the actual closed-loop input and state trajectories differ from
the predicted open-loop trajectories, even if no model plant mismatch and no disturbances are present.
This can be explained considering somebody hiking in the mountains without a map. The goal of the
hiker is to take the shortest route to his goal. Since he is not able to see “infinitely” far (or up
to his goal), the only thing he can do is to plan a certain route based on the current information
(skyline/horizon) and then follow this route. After some time the hiker reevaluates his route based on
the fact that he might be able to see further. The new route obtained might be significantly different
from the previous route and he will change his route, even though he has not yet reached the end of
the previous considered route.

Basically, the same approach is employed in a finite horizon NMPC strategy. At a recalculation
instant the future is only predicted over the prediction horizon. At the next recalculation instant the
prediction horizon moves further, thus allowing to obtain more information and re-planning. This is
depicted in Figure 2.2, where the system can only move inside the shaded area as state constraints
are present. The difference between the predicted trajectories and the closed-loop trajectories has two

x1

x2

x(0) = x̄(0)

x(t1)

X

x̄(t1 + Tp; ū?(·;x(t1)), x(t1))

= x̄(t1; ū?(·; x(0)), x(0))

x̄(Tp; ū?(·; x0), x0)

Figure 2.2: Mismatch between open-loop prediction and closed-loop behavior.

immediate consequences.

Firstly, the actual goal of computing a feedback minimizing the performance objective over the in-

finite horizon of the closed-loop is not achieved. In general, it is by no means true that a repeated
minimization over a moving finite horizon objective leads to an optimal solution for the correspond-
ing infinite horizon problem. The solutions will often even differ significantly if a short finite horizon
is chosen.

Secondly, if the predicted and the actual trajectory differ, there is no guarantee that the closed-loop
system will be stable. It is indeed easy to construct examples for which the closed-loop becomes
unstable if a short finite horizon is chosen, see for example (Bitmead et al., 1990; Muske and Rawl-
ings, 1993). Hence, when using finite prediction horizons the problem must be modified to guarantee
stability.

The basic overall structure of an NMPC control loop is shown in Figure 2.3. Based on the applied
input and the measured outputs a state estimate is obtained. This estimate is fed into the NMPC
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Plant
u y

state estimator
cost function

+
constraints

optimizer
dynamic

NMPC controller

x̂
system model

Figure 2.3: Basic NMPC control loop.

controller which computes a new input that is applied to the system. Briefly the key characteristics
and properties of NMPC are:

• NMPC allows the direct use of nonlinear models for prediction.

• NMPC allows the explicit consideration of state and input constraints.

• In NMPC a specified time domain performance criteria is minimized on-line.

• In NMPC the predicted behavior is in general different from the closed-loop behavior.

• The implementation of NMPC requires the on-line solution of an open-loop optimal control
problem.

• To perform the prediction the system states must be measured or estimated.

Remark 2.1 In this work we mainly focus on NMPC for the stabilization of time-invariant nonlinear

systems. However, NMPC is also applicable to other classes of systems, i.e. discrete time systems,

delay systems, time-varying systems, and distributed parameter systems, for more details see for

example (Mayne et al., 2000; De Nicolao et al., 2000; Allgöwer et al., 1999). Furthermore, NMPC is

also well suited for tracking problems or problems where an optimal transfer between steady-states

must be performed, see (Magni, De Nicolao and Scattolini, 2001a; Michalska, 1996; Findeisen, Chen

and Allgöwer, 2000; Findeisen and Allgöwer, 2000b; Tenny et al., 2002; Wan and Kothare, 2003a).

Many of the mentioned properties can be seen as advantages as well as drawbacks of NMPC. The
possibility to directly use a nonlinear model is advantageous if a detailed first principles model is
available. In this case often the performance of the closed-loop can be increased significantly without
much tuning. Nowadays first principle models of a plant are often derived before a plant is built.
Especially the process industry has a strong desire to use (rather) detailed models from the first design
up to the operation of the plant for reasons of consistency and cost minimization. On the other side,
if no first principle model is available, it is often dfifficult to obtain a good nonlinear model based on
identification techniques. In this case it might be better to apply other control strategies.

2.4 Numerical Aspects of NMPC

Predictive control circumvents the solution of the Hamilton-Jacobi-Bellman equation by solving the
open-loop optimal control problem at every sampling instant only for the currently (measured) system
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state. Nevertheless, the application of NMPC requires the sufficiently fast on-line solution of an
optimal control problem. Thus, one important precondition for the applicability of NMPC is the
availability of reliable and efficient numerical dynamic optimization algorithms for Problem (2.4).
Solving (2.4) numerically efficient and fast is, however, not a trivial task and has attracted much
research interest in recent years (see e.g. (Mayne, 1995; Wright, 1996; Bartlett et al., 2000; Tenny and
Rawlings, 2001; Biegler, 2000; Li and Biegler, 1989; de Oliveira and Biegler, 1995; Martinsen et al.,
2002; Biegler and Rawlings, 1991; Mahadevan and Doyle III, 2003; Diehl, Findeisen, Schwarzkopf,
Uslu, Allgöwer, Bock and Schlöder, 2002; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and
Schlöder, 2003; Diehl, Findeisen, Nagy, Bock, Schlöder and Allgöwer, 2002)). Typically so called
direct solution methods (Binder et al., 2001; Biegler and Rawlings, 1991; Pytlak, 1999) are used, i.e.
the original infinite dimensional problem is approximated by a finite dimensional one discretizing
the input (and also possibly the state). Further details on the efficient solution of the optimal control
problem (2.4) are provided in Chapter 3.

2.5 System Theoretical Aspects of NMPC

This section briefly reviews and discusses theoretical aspects of NMPC. Besides the question of nom-
inal stability of the closed-loop, remarks on robust NMPC strategies as well as the output-feedback
problem are given.

2.5.1 Nominal Stability of NMPC

One elementary question in NMPC is whether a finite horizon NMPC strategy does guarantee stability
of the closed-loop. While a finite prediction and control horizon is desirable from an implementation
point of view, the difference between the predicted state trajectory and the resulting closed-loop be-
havior can lead to instability.

The most intuitive way to achieve stability/convergence to the origin is to use an infinite horizon cost,
i.e. Tp in Problem 1 is set to ∞. To exemplify the basic ideas behind an NMPC stability proof we
briefly outline how stability for the instantaneous case can be established. Detailed derivations for
this case can be found in (Mayne and Michalska, 1990; Mayne et al., 2000) for the continuous time
case, and in (Keerthi and Gilbert, 1988; Keerthi and Gilbert, 1985) for the discrete time case.

In infinite horizon NMPC, the cost function of the open-loop optimal control problem (2.4) is given
by

J(x(·), u(·))=

∫ ∞

t

F (x(τ), u(τ))dτ. (2.11)

Stability of Infinite Horizon Instantaneous NMPC: Nearly all stability proofs of instantaneous
NMPC schemes use the value function as a Lyapunov function, i.e. they establish that

∂V

∂x
(x)f(x, u(x(t)) ≤ −α(‖x‖), (2.12)
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where α is a K function. First note that in the nominal case with an infinite horizon due to the principle
of optimality (Bellman, 1957) the open and the closed-loop state and input trajectories coincide (end
pieces of optimal trajectories are optimal), i.e.

x(t) = x?(t; x0, ū
?(t0; x0)), u(t) = ū?(t0; x0).

Thus, if the open-loop optimal control problem is feasible at t0, it is also feasible afterwards. It
furthermore follows that

V (x(t)) = V (x0) −
∫ t

t0

F (x(τ ; x0, ū
?(τ ; x0)), ū

?(τ ; x0))dτ. (2.13)

Under the simplifying assumption that V (x) is C1, and that the level sets of V are compact differen-
tiating (2.13) with respect to t leads to

∂V

∂x
(x(t))f(x(t), ū?(t; x(t))) ≤ −F (x(t), ū?(t; x(t))).

Thus, assuming that F is lower bounded by a K function, V is a Lyapunov function and it is estab-
lished that the closed-loop is asymptotically stable.

In the following we review existing instantaneous and sampled-data NMPC schemes that guarantee
stability and outline some of the differences between them.

2.5.1.1 Stabilizing Instantaneous NMPC Schemes

One of the simplest approaches leading to stability in the case of a finite prediction horizon is to add
a so called zero terminal constraint of the form

x̄(t + Tp) = 0 (2.14)

to the open-loop optimal control problem (Chen and Shaw, 1982; Mayne and Michalska, 1990;
Keerthi and Gilbert, 1988; Meadows et al., 1995). This corresponds to shrinking the set E of (2.4) to
zero. This allows, under certain regularity assumptions, to establish asymptotic stability. The feasibil-
ity at a specific time follows from the feasibility before, since one can complement the old input by a
zero input at the end. In comparison to (2.13) now only an inequality holds, since the complemented
input is feasible, but not optimal:

V (x(t)) ≤ V (x0) −
∫ t

t0

F (x(τ ; x0, ū
?(τ ; x0)), ū

?(τ ; x0))dτ ∀t ∈ [t0, t0 + Tp]. (2.15)

This argument holds for all t0 and t, thus V is a suitable Lyapunov function candidate if additional
regularity assumptions are imposed, which are mainly necessary to guarantee that V is continuously
differentiable. The regularity assumptions can be relaxed, as shown in (Michalska and Mayne, 1991),
merely implying that the value function is locally Lipschitz continuous. In (Michalska and Vinter,
1994; Michalska, 1995) this result is further expanded to the case of time varying systems with state
constraints, and in (Michalska, 1996) to the tracking problem.
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One disadvantage of a zero terminal constraint is that the predicted system state is forced to reach the
origin in finite time. This leads to feasibility problems for short prediction/control horizon lengths,
i.e. small regions of attraction. Furthermore, from a computational point of view, an exact satisfaction
of a zero terminal equality constraint does require in general an infinite number of iterations in the
optimization and is thus not desirable. The main advantages of a zero terminal constraint are the
straightforward application and the conceptual simplicity.

Approaches avoiding a zero terminal constraint have been first proposed for sampled-data NMPC, as
discussed in the next section. In general, the terminal region constraint (2.4e)

x̄(t+ Tp) ∈ E (2.16)

and/or the terminal penalty E(x) in the cost function (2.4f) are used to enforce stability. Basically in
these approaches the terminal cost E is assumed to be a F -conform control Lyapunov function for
the system in the terminal region E , enforcing a decrease in the value function. The terminal region
constraint is added to enforce that if the open-loop optimal control problem is feasible once, that it
will remain feasible, and to allow establishing the decrease using E.

The work in (Mayne et al., 2000) presents a rather general framework for stabilizing instantaneous
NMPC schemes. This framework is summarized in the following theorem.

Theorem 2.1 (Stability of Instantaneous NMPC)
Suppose that E and E are such that

(a) the value function V (x) is continuously differentiable as a function of x.

(b) E isC1 withE(0) = 0, E ⊆ X is closed and connected with the origin contained in E and there

exists a continuous local controller k(x) that renders E invariant, satisfies the input constraints,

i.e. for any x ∈ E , k(x) ∈ U , and guarantees that the following holds:

∂E

∂x
f(x, k(x)) + F (x, k(x)) ≤ 0, ∀x ∈ E .

(c) the NMPC open-loop optimal control problem has a feasible solution for t0.

Then the nominal closed-loop system defined by (2.1), (2.4) and (2.6) is asymptotically stable. Fur-

thermore, the region of attraction is given by the set of states for which the open-loop optimal control

problem has a feasible solution.

This framework includes, under further regularity assumptions, the zero terminal constraint NMPC
approach (E = 0) and the infinite horizon NMPC approach (Tp = ∞). The key points are the decrease
condition implied by assumption (b) and the invariance of the terminal region E under the local control
law, implying feasibility if an initial feasible solution exists.

In (Michalska, 1997; Gyurkovics, 1998) it is shown that adding a terminal region constraint of the
form (2.4e) can be avoided without jeopardizing asymptotic stability. The result in (Michalska, 1997)
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establishes that if the weight on the terminal state x̄(t + Tp) is sufficiently large that the closed-loop
is stable. This result is in agreement with similar observations in the linear MPC case (Bitmead
et al., 1990). The result presented in (Gyurkovics, 1998) is based on a generalization of the so-called
Fake Riccati Equation techniques. Basically it is shown that if the terminal penalty term is chosen
such that the Hamiltonian function of the system is “negative” that the closed-loop is asymptotically
stable.

2.5.1.2 Stabilizing Sampled-data Open-loop NMPC Schemes

For sampled-data open-loop NMPC in principle similar approaches that guarantee stability as in the
instantaneous case exist. However, additionally the behavior of the closed-loop in between the recal-
culation instants must be taken into account. The main advantage of a sampled-data open-loop NMPC
implementation is that no differentiability assumption on the value function is necessary, since the
open-loop input is applied over a “finite” time, see e.g. (Fontes, 2000b; Fontes and Magni, 2003) and
the generalized results presented in Chapter 4.

In principle five different approaches for achieving stability of sampled-data open-loop NMPC can be
distinguished: NMPC schemes using an infinite prediction horizon, NMPC schemes that switch to a
local controller to achieve asymptotic stability near the origin, NMPC schemes where the convergence
is enforced by a terminal region constraint and a terminal penalty term, NMPC schemes using control
Lyapunov functions to establish convergence, and NMPC schemes enforcing stability by adding a
direct contraction condition/decrease condition to the optimal control problem.

Stability via a zero terminal constraint:
Similar to instantaneous NMPC stability of the closed-loop can be enforced by adding a zero terminal
constraint of the format (2.14) to the open-loop optimal control problem. The convergence of such a
scheme follows from the results presented in (Fontes, 2000b).

Dual-mode control:
One of the first sampled-data NMPC approaches avoiding an infinite horizon or a zero terminal con-
straint is the so called dual-mode NMPC approach (Michalska and Mayne, 1993). Dual-mode is
based on the assumption that a local (linear) controller is available for the nonlinear system. Based
on this local linear controller a terminal region and a quadratic terminal penalty term are added to the
open-loop optimal control problem similar to E and E such that: 1.) the terminal region is invariant
under the local control law, 2.) the terminal penalty term E enforces a decrease in the value function.
Furthermore the prediction horizon is considered as additional degree of freedom in the optimization.
The terminal penalty term E can be seen as an approximation of the infinite horizon cost inside of
the terminal region E under the local linear control law. Note, that dual-mode control is not a “pure”
NMPC controller, since the open-loop optimal control problem is only repeatedly solved until the
system state enters the terminal set E , which is achieved in finite time. Once the system state is inside
E the control is switched to the local control law u = Kx, thus the name dual-mode NMPC. Thus, the
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local control is utilized to establish asymptotic stability while the NMPC feedback is used to increase
the region of attraction of the local control law.

Control Lyapunov function approaches:
In the case that E is a global control Lyapunov function for the system, the terminal region constraint
x̄(t + Tp) ∈ E is actually not necessary. Even if the control Lyapunov function is not globally valid,
convergence to the origin can be achieved (Jadbabaie et al., 2001; Ito and Kunisch, 2002; Sznaier
et al., 2003; Sznaier and Cloutier, 2001) and it can be established that for increasing prediction horizon
length the region of attraction of the infinite horizon NMPC controller is recovered (Jadbabaie et al.,
2001). For all these approaches it is in general rather difficult to consider constraints on the inputs
and states, since it is in general rather difficult to obtain suitable control Lyapunov functions.

Convergence by enforced contraction:
Besides the approaches presented so far it is also possible to enforce the stability of NMPC directly,
as in contractive NMPC (de Oliveira Kothare and Morari, 2000; Yang and Polak, 1993). In these
approaches an explicit contraction constraint of the form

‖x̄(ti+1)‖ ≤ β‖x(ti)‖, β ∈ (0, 1),

is added to the open-loop optimal control problem. This constraint directly enforces the contraction
of the state at the recalculation instants. The main problem with respect to this approach is that
the feasibility at one time instant does not necessarily imply the feasibility at the next recalculation
instant, thus strict assumptions on the system must be made. Furthermore, assumptions on the well
behavedness of the system in between recalculation instants are necessary.

A “mixture” of enforced contraction and the control Lyapunov function approach is considered
in (Primbs et al., 2000). In this work a direct control Lyapunov function decreases in the cost function
along solution trajectories with a required decrease of the control Lyapunov function value at the end
of the prediction horizon is used. Thus, the degree of freedom left in the control Lyapunov function
is utilized in NMPC to minimize the considered objective function. In the limit for Tp → 0 this
approach converges to the min-norm controller, while for Tp → ∞ the approach converges to an
infinite horizon optimal control law.

Unified conditions for convergence:
Besides the outlined approaches there exist a series of approaches (Michalska and Mayne, 1993;
Chen and Allgöwer, 1998b; Chen and Allgöwer, 1998a; Chen et al., 2000; Magni and Scattolini,
2002) that are based on the consideration of a (virtual) local control law that is able to stabilize the
system inside of the terminal region and where the terminal penalty E provides an upper bound on
the optimal infinite horizon cost. Similar to (Mayne et al., 2000) for the instantaneous case, (Fontes,
2000b) proposes a unifying frame for sampled-data NMPC. This frame even allows considering the
stabilization of systems which can be only stabilized by discontinuous control. The following theorem



2.5 System Theoretical Aspects of NMPC 19

covers most of the existing stability results. It establishes conditions for the convergence of the closed-
loop states under sampled-data NMPC. It is a slight modification of the results given in (Fontes,
2000b; Chen and Allgöwer, 1998a; Chen, 1997).

Theorem 2.2 (Convergence of sampled-data open-loop NMPC)
Suppose

(a) the terminal region E ⊆ X is closed with 0 ∈ E and the terminal penalty E(x) ∈ C 1 is positive

semi-definite.

(b) ∀x(0)∈E there exists an (admissible) input uE : [0, π̄]→U such that

∂E

∂x
f(x(τ), uE(τ)) + F (x(τ), uE(τ)) ≤ 0, and x(τ ; x(0), uE(·)) ∈ E ∀τ ∈ [0, π̄]. (2.17)

(c) the NMPC open-loop optimal control problem has a feasible solution for t0.

Then for the closed-loop system defined by (2.1), (2.4) and (2.9), x(t)→0 for t → ∞. Furthermore,

the region of attraction is given by the set of states for which the open-loop optimal control problem

has a feasible solution.

The proof of this theorem can be derived as a special case of the results presented in Chapter 4.

Remark 2.2 With respect to all presented approaches it should be noted that it is not strictly nec-

essary to find a global minimum of the optimal control problem at every sampling instant. Instead,

the optimality can be replaced by requiring that the value function is decreasing sufficiently from

recalculation instant to recalculation instant while guaranteeing feasibility at the next recalculation

instant. Thus, feasibility and a decrease in the value function can be seen as leading to closed-loop

stability, i.e.“feasibility implies stability” (Scokaert et al., 1999; Michalska and Mayne, 1993; Chen

and Allgöwer, 1998b; Findeisen and Rawlings, 1997; Findeisen, 1997; Jadbabaie et al., 2001).

Remark 2.3 Various ways to determine a suitable terminal penalty term and terminal region exist.

Examples are the use of a control Lyapunov function as terminal penalty E (Jadbabaie et al., 2001)

or the use of a local nonlinear or linear control law to determine a suitable terminal penalty E and

a terminal region E (Michalska and Mayne, 1993; Chen and Allgöwer, 1998b; Chen and Allgöwer,

1998a; Chen et al., 2000; Magni and Scattolini, 2002).

Remark 2.4 The key advantage of using a terminal penalty E and terminal region constraints is

the fact that the open-loop optimal control problem is relaxed, thus leading to an often significantly

decreased time required for the numerical solution of the open-loop optimal control problem, see for

example (Chen and Allgöwer, 1998b; Findeisen, Nagy, Diehl, Allgöwer, Bock and Schlöder, 2001).

This issue is further discussed in Chapter 3. Furthermore, it is possible to take constraints on the

states and inputs into account, which is typically a problem for approaches based on control Lyapunov

function considerations. In comparison to zero terminal constraint NMPC, the performance of the

closed-loop with respect to the “maximum” achievable performance by an infinite horizon NMPC
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scheme can be increased significantly. The terminal penalty term E can be seen as an upper bound

of the optimal infinite horizon cost inside of the terminal region E (Chen and Allgöwer, 1998b). If the

local controller used for deriving E does lead to similar performance as an optimal controller with

an infinite horizon, similar performance of the finite horizon NMPC scheme and an infinite horizon

NMPC scheme can be expected. Thus, the terminal penalty term E can be seen as quasi expanding

the prediction horizon to infinity, giving the control scheme in (Chen and Allgöwer, 1998b) its name,

quasi-infinite horizon NMPC.

2.5.2 Robustness and Robust Design of NMPC

The NMPC schemes presented up to now are based on the assumption that the actual system is
identical to the model used for prediction, i.e. that no model-plant mismatch or unknown distur-
bances are present. Clearly, this is very unrealistic for practical applications and the development
of an NMPC framework to address robustness issues is of paramount importance. In general, one
distinguishes between the inherent robustness properties of NMPC and NMPC schemes taking the
uncertainty/disturbances directly into account.

The inherent robustness of NMPC corresponds to the fact that nominal NMPC can cope with uncer-
tainties and disturbances without taking them directly into account. The inherent robustness of NMPC
property stems from the close relation of NMPC to optimal control. Results on the inherent robust-
ness of instantaneous NMPC can for example be found in (Magni and Sepulchre, 1997; Chen and
Shaw, 1982; Mayne et al., 2000). Discrete time results are given in (Scokaert et al., 1997). Results for
specific sampled-data NMPC implementations can be found in (Michalska and Mayne, 1993; Yang
and Polak, 1993). In Chapter 5 we expand these results to the general sampled-data open-loop feed-
back case.

Most robust NMPC schemes taking the uncertainty/disturbance directly into account are based on a
min-max formulation. At least three main formulations can be distinguished:

Robust NMPC solving an open-loop min-max problem (Lall and Glover, 1994; Chen et al., 1997;
Blauwkamp and Basar, 1999):
In this formulation the standard NMPC setup is kept. However, the cost function takes the worst case
uncertainty (or disturbance) out of a set D into account. Thus, the following min-max problem is
solved on-line

min
ū(·)

max
∆∈D

∫ t+Tp

t

F (x̄(τ), ū(τ))dτ + E(x̄(t+ Tp))

subject to: ˙̄x(τ) = f∆ (x̄(τ), ū(τ)) , x̄(t) = x(t).
Here f∆ is the system realization including the uncertainty. The resulting open-loop optimization
is a min-max problem. Adding stability constraints similar to the nominal case is difficult since no
feasible solution might be found at all, as all possible uncertainty/disturbance scenarios have to be
considered. One open-loop input signal must lead to stability for a whole class of systems “spanned”
by the uncertainty while guaranteeing satisfaction of the stability constraints.
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H∞ based NMPC (Magni, Nijmeijer and van der Schaft, 2001; Chen et al., 1997; Magni, De Nico-
lao, Scattolini and Allgöwer, 2001):
Another possibility is to consider the standard H∞ problem in a receding horizon framework. The
main problem for a practical application of this approach is the prohibitive computation time and the
fact that a global optimum of a dynamic min-max problem must be found in order to guarantee robust
stability.

Robust NMPC via optimizing a feedback controller used in between the sampling times
(Kothare et al., 1996; Magni, De Nicolao, Scattolini and Allgöwer, 2001; Fontes and Magni, 2003):
The open-loop formulation of the robust stabilization problem can be seen as very conservative,
since only open-loop control is used during the sampling times, i.e. the disturbances are not directly
rejected in between the sampling instants. Instead of optimizing the open-loop input signal directly,
one can search for an optimal feedback controller that is applied in between the sampling instants,
thus introducing instantaneous feedback. In this approach the optimization variables are the design
parameter of a “sequence” of control laws ui = ki(x) applied in between the sampling instants, i.e.
the optimization problem has as optimization variables the parameters of the feedback controllers
{k1, . . . , kN}. This formulation overcomes the conservatism of the first approach, since not one
single input signal must overcome all possible disturbances. Nevertheless the solution is often still
prohibitively complex.

Summarizing, by now most of the robust NMPC designs are computationally intractable for a prac-
tical application. Thus, the analysis of inherent robustness properties of NMPC is of special interest,
to at least allow an answer to the question if sufficiently small disturbances can be rejected. This will
be considered for sampled-data open-loop NMPC in more detail in Chapter 5.

2.5.3 Output-Feedback and NMPC

One of the key obstacles for the application of NMPC is that at every sampling instant ti the system
state is required for prediction. However, often not all system states are directly accessible, i.e. only
the output y is directly available for feedback:

y = h(x, u) (2.18)

where y(t) ∈ R
p are the measured outputs and where h : R

n × R
m → R

p maps the state to the
output. To overcome this problem one typically employs a state observer for the reconstruction of the
states. In principle, instead of the optimal feedback the following feedback, based on the certainty
equivalence principle, is applied:

u(t)= ū?(t; x̂(ti)), (2.19)

where x̂ denotes a state estimate provided by a state observer. Yet, due to the lack of a general
nonlinear separation principle, stability is not guaranteed, even if the state observer and the NMPC
controller are both stable.
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Various researchers have addressed the question of output-feedback NMPC using observers for state
recovery, for a more comprehensive review we refer to (Findeisen et al., 2003d). We restrict the
discussion to output-feedback model predictive control schemes relying on state space models for
prediction and differentiate between the two output-feedback design approaches as outlined above.

The “certainty equivalence”-method is often used in a somewhat ad-hoc manner in industry (Qin and
Badgwell, 2003), e.g. based on the (extended) Kalman filter as a state observer. In the presence of a
separation principle, this would be a theoretically sound way to achieve a stabilizing output-feedback
scheme. Unfortunately, a general separation principle does not exist for MPC — even in the case of
linear models, the separation principle for linear systems is void due to the presence of constraints.
Thus, at the outset, nothing can be said about closed loop stability in this case, and it seems natural
that one has to restrict the class of systems one considers to obtain results. As an example, (Zheng and
Morari, 1995) shows global asymptotic stability for the special case of discrete-time linear open-loop
stable systems.

For a more general class of nonlinear systems, it can be shown that the properties of the value function
as a Lyapunov function gives some robustness of NMPC to “small” estimation errors. For “weakly
detectable” discrete-time systems, this is first pointed out in (Scokaert et al., 1997) (see also (Magni
et al., 1998; Magni, De Nicolao and Scattolini, 2001a), and an early version in (Muske et al., 1994)).
However, these results must be interpreted as “local”, in the sense that even though that an approxi-
mated region of attraction can be calculated in principle, it is not clear how parameters in the controller
or observer must be tuned to influence the size of the region of attraction.

In (de Oliveira Kothare and Morari, 2000), local uniform asymptotic stability of contractive NMPC
in combination with a “sampled” EKF state estimator is established.

Non-local results are obtained in (Michalska and Mayne, 1995), where an optimization based moving
horizon observer combined with the NMPC scheme proposed in (Michalska and Mayne, 1993) is
shown to lead to (semi-global) closed-loop stability. For the results to hold, however, a global opti-
mization problem for the moving horizon observer with an imposed contraction constraint must be
solved.

More recently, “regional” separation principle-based approaches have appeared for a wide class of
NMPC schemes (Imsland, Findeisen, Bullinger, Allgöwer and Foss, 2003; Findeisen et al., 2003b;
Findeisen et al., 2003d). In (Imsland, Findeisen, Bullinger, Allgöwer and Foss, 2003; Findeisen,
Imsland, Allgöwer and Foss, 2001; Imsland et al., 2001) it is shown that based on the results of (Atassi
and Khalil, 2000; Teel and Praly, 1995), semi-regional practical stability results could be obtained for
instantaneous NMPC based on a special class of continuous-time models, using high gain observers
for state estimation. In this context, semi-regional practical stability means that for any compact
region inside the state-feedback NMPC region of attraction, there exists a sampling time and an
observer gain such that for system states starting in this region, the closed loop take the state into
any small region containing the origin. The instantaneous result of (Imsland, Findeisen, Bullinger,
Allgöwer and Foss, 2003) are generalized in (Findeisen, Imsland, Allgöwer and Foss, 2002; Findeisen
et al., 2003b) to sampled-data open-loop feedback. In (Findeisen et al., 2003b) it is specifically
pointed out that the results can be seen as a consequence of the inherent robustness NMPC possesses
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under certain conditions. While all of these results are limited to the use of high-gain observers,
the results are generalized in (Findeisen et al., 2003c; Findeisen et al., 2003d) to a wider class of
observers and, also, open-loop state-feedback NMPC schemes. Specifically explicit conditions on
the estimation error are derived such that the closed-loop is semi-regional practically stable. The
condition basically requires that the observer error can be made as small as desired in any desired
time. While this condition is in principle very stringent, observer designs exist that achieve the desired
properties.

Related results to “regional” separation principle-based approaches appeared recently in (Adetola
and Guay, 2003), where for the same system class as considered in (Imsland, Findeisen, Bullinger,
Allgöwer and Foss, 2003), semi-regional practical stability results are presented using discretized

high-gain observers.

In (Wan and Kothare, 2003b) a scheduled state-feedback NMPC scheme is combined with an ex-
ponential convergent observer, and regional stability results are established. On a related note, the
same authors show in (Wan and Kothare, 2002) how an NMPC controller can be combined with a
convergent observer to obtain stability.

In the robust design approach the errors in the state estimate are directly accounted for in the state-
feedback predictive controller. For linear systems (Bemporad and Garulli, 2000) introduces a set
membership estimator to obtain quantifiable bounds on the estimation error, which are used in a
robust constraint-handling predictive controller. The setup of (Bemporad and Garulli, 2000) is taken
further in (Chisci and Zappa, 2002), using a more general observer, and considering more effective
computational methods. For the same class of systems, (Löfberg, 2002) does joint estimation and
control calculation based on a minimax formulation, however without obtaining stability guarantees.

For linear systems with input constraints, the method in (Lee and Kouvaritakis, 2001) obtains stabil-
ity guarantees through computation of invariant sets for the state vector augmented with the estima-
tion error. In a similar fashion, by constructing invariant sets for the observer error, (Kouvaritakis
et al., 2000) adapts the NMPC controller in (Cannon et al., 2001) such that the total closed loop is
asymptotically stable.

In Chapter 6 we derive a generalization of the “regional” separation principle-based approaches as
presented in (Imsland, Findeisen, Bullinger, Allgöwer and Foss, 2003; Findeisen et al., 2003b; Find-
eisen et al., 2003d; Findeisen et al., 2003c; Findeisen, Imsland, Allgöwer and Foss, 2002) to the
general sampled-data open-loop output-feedback case.

2.6 Summary

In this chapter we reviewed the basics principle behind NMPC and outlined the difference between
instantaneous and sampled-data NMPC. Furthermore, we discussed some of the theoretical questions
such as stability and robustness, as well as some of the numerical aspects. The chapter lays the
notational and conceptual basis for the following chapters.
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One of the key problems of sampled-data NMPC is the fact that at every recalculation instant an open-
loop optimal control problem must be solved. It has been argued that NMPC will never be applicable
to reasonably sized practical control problems, since the solution of the open-loop optimal control
problem can not be obtained sufficiently fast. In the next chapter we will address this question.
We show that if an NMPC scheme with reduced computational demand and an efficient numerical
solution strategy for the resulting dynamic optimization problem are used, then NMPC is real-time
applicable to practically relevant, rather large control problems.
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Chapter 3

Computational Issues in Sampled-data
NMPC

Predictive control circumvents the solution of the Hamilton-Jacobi-Bellman equation by solving the
open-loop optimal control problem at every recalculation instant only for the currently (measured)
system state. An often intractable problem is replaced by a tractable one. Nevertheless, for a real-time
implementation the open-loop optimal control problem (2.4) must be solved efficiently and reliable.
According to (Qin and Badgwell, 2000) “Speed and assurance of reliable solution in real-time are
major limiting factors in existing applications”. Solving (2.4) numerically efficient and fast is, how-
ever, not a trivial task and has attracted much research interest in recent years, see e.g. (Mayne, 1995;
Wright, 1996; Bartlett et al., 2000; Tenny and Rawlings, 2001; Tenny, 2002; Biegler, 2000; Li and
Biegler, 1989; de Oliveira and Biegler, 1995; Martinsen et al., 2002; Biegler and Rawlings, 1991; Ma-
hadevan and Doyle III, 2003; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder,
2002; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder, 2003; Diehl, Findeisen,
Nagy, Bock, Schlöder and Allgöwer, 2002; Findeisen, Diehl, Uslu, Schwarzkopf, Allgöwer, Bock,
Schlöder and Gilles, 2002; Binder et al., 2001; Sistu et al., 1993).

In this chapter we show that a real-time application of NMPC is possible if a “symbiosis” of specially
tailored dynamic optimization strategies and NMPC schemes with a reduced computational load are
used. For this purpose we first discuss suitable NMPC schemes that facilitate a fast and efficient so-
lution. Then we outline one specific, specially tailored dynamic optimization strategy based on mul-
tiple shooting methods, developed in the scope of a computational feasibility study of NMPC (Nagy,
Findeisen, Diehl, Allgöwer, Bock, Agachi, Schlöder and Leineweber, 2000; Findeisen, Allgöwer,
Diehl, Bock, Schlöder and Nagy, 2000; Diehl, 2002; Diehl, Findeisen, Nagy, Bock, Schlöder and All-
göwer, 2002; Diehl et al., 2001; Findeisen, Nagy, Diehl, Allgöwer, Bock and Schlöder, 2001; Find-
eisen, Diehl, Bürner, Allgöwer, Bock and Schlöder, 2002; Findeisen, Diehl, Uslu, Schwarzkopf, All-
göwer, Bock, Schlöder and Gilles, 2002; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and
Schlöder, 2003; Findeisen, Nagy, Diehl, Allgöwer, Bock and Schlöder, 2001; Findeisen and All-
göwer, 2000a). The efficiency of the outlined method is underpinned by means of the control of a
high-purity distillation column.
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3.1 NMPC Formulations Facilitating Efficient Solutions

Besides an efficient numerical solution of the dynamic optimization problem occurring in NMPC,
the real-time applicability also depends strongly on the choice of an NMPC scheme that achieves
guaranteed stability and good performance without leading to a high computational demand.

Two approaches reducing the required computational demand of the applied NMPC scheme are
shortly discussed in the following.

3.1.1 Use of Short Horizon Lengths and Non-stringent Stability
Constraints

Ideally, one seeks to use an infinite control/prediction horizon to achieve good performance and sta-
bility of the closed-loop. However, choosing an infinite horizon leads to an infinite dimensional
optimization problem, which is not desirable from a computational point of view. One way to
achieve stability avoiding an infinite horizon is the use of the so-called zero terminal constraint NMPC
scheme (Keerthi and Gilbert, 1988; Mayne and Michalska, 1990), forcing the state at the end of the
horizon to the desired steady-state. However, the resulting optimization problem is in general expen-
sive, since a two-point boundary value problem must be solved during optimization. Additionally
the control performance may decrease significantly, since the open-loop trajectory has to be forced
to reach the set-point in finite time. The NMPC framework (2.4) including a terminal penalty and
terminal region constraint allows overcoming this dilemma. Several schemes utilize this frame and
require a reduced computational load (Chen and Allgöwer, 1998b; De Nicolao et al., 1996; Jadbabaie
et al., 2001; Fontes, 2000b; Primbs et al., 2000; Magni, De Nicolao and Scattolini, 2001b; Sznaier
et al., 2003). All of these approaches use a final terminal penalty term E and relax the zero terminal
constraint by a terminal region constraint x̄(t+ Tp; x(t))∈E or even do not require any constraint on
the final predicted state at all. The terminal penalty is typically used for the approximation of the in-
finite horizon cost. The (often) necessary terminal region constraint is in general not very restrictive,
i.e. it does not complicate the dynamic optimization problem in a restrictive manner, as for example a
zero terminal constraint does. The computational (and performance) advantage of these schemes lies
in the fact that shorter horizons can be used, while not jeopardizing performance and stability. The
achievable performance of the resulting scheme is close to the infinite horizon one, if the terminal
region and a terminal penalty term are chosen suitably. We propose to use this kind of schemes in
combination with specially tailored dynamic optimization strategies as outlined in the next section.

In the following we focus on the schemes derived in (Chen and Allgöwer, 1996; Chen and Allgöwer,
1998b; De Nicolao et al., 1996), since they are used in Section 3.4 for the control of a high-purity
distillation column. In (De Nicolao et al., 1996) it is proposed to approximate the infinite horizon cost
via the terminal penalty term E inside the terminal region E by utilizing a local control law u = k(x)

(often a LQR controller based on the system linearization) which can stabilize the system inside of E .
To achieve this, the predicted state at the end of the horizon is forced to lie in the set E . E(x̄(t+ Tp))

is then obtained by an on-line “integration” of the system up to “infinity” using the local control law,
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i.e.

E(x̄(t+ Tp)) =

∫ ∞

t+Tp

F (x̃(τ), k(x̃(τ)))dτ,

where
˙̃x = f(x̃, k(x̃)), x̃(t) = x̄(t).

Thus, for every evaluation of the cost the system must be integrated to “infinity”. In (De Nicolao
et al., 1996) it is shown that for achieving stability it is actually not necessary to integrate to infinity,
instead a rather long calculation time into the future is sufficient. Note that the calculation of E based
on the integration can be very cheap even on relative long horizons, as for example the step size of the
integrator near the steady-state can typically be very large. This scheme is in the following referred
to as simulation approximated infinite horizon NMPC (SAIH-NMPC). Notice, that the results in (De
Nicolao et al., 1996) are only given for discrete time systems, however they can be straightforwardly
expanded to continuous time systems based on the results presented in (Mayne et al., 2000; Fontes,
2000b).

The approach proposed in (Chen and Allgöwer, 1996; Chen and Allgöwer, 1998b) uses an explicit
upper bound of the infinite horizon cost inside of E that is obtained off-line. Typically the calculation
of the terminal penalty E and the terminal region E are based on a linearization of the system and
the use of a local linear control law. To obtain E and E a semi-infinite optimization problem must
be solved off-line. The off-line calculation of E and E avoids the on-line integration of the system
equations using the local control law for a long horizon. In the following we refer to this scheme as
QIH-NMPC (quasi-infinite horizon NMPC).

3.1.2 Use of Suboptimal NMPC Strategies, Feasibility Implies Stability

To achieve stability it is often not necessary to find the global minima of the open-loop optimization
problem. It is sufficient to achieve a decrease in the optimal cost at every time to guarantee stabil-
ity (Chen and Allgöwer, 1998b; Scokaert et al., 1999; Jadbabaie et al., 2001; Fontes, 2000b; Find-
eisen, 1997; Findeisen and Rawlings, 1997). Thus, if one employs an optimization strategy that
delivers feasible solutions at every sub-iteration while decreasing the cost, it is possible to stop the
iterations whenever necessary and still guarantee stability.

3.2 Solution of the NMPC Optimal Control Problem

In principle, a wide variety of approaches for the solution of the open-loop optimal control prob-
lem (2.4) exists. In this chapter we mainly focus on the solution method proposed in (Diehl, Find-
eisen, Nagy, Bock, Schlöder and Allgöwer, 2002; Diehl, 2002; Findeisen, Diehl, Uslu, Schwarzkopf,
Allgöwer, Bock, Schlöder and Gilles, 2002; Findeisen, Allgöwer, Diehl, Bock, Schlöder and Nagy,
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2000), which has been implemented in a specially tailored version of the dynamic optimization pack-
age MUSCOD-II (Diehl, 2002; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder,
2002; Leineweber, 1998).

The NMPC optimal control problem (2.4) is introduced rather generally considering a terminal set E
and input and state constraints sets. While this formulation is well suited for theoretical considera-
tions, the (numerical) solution normally requires a concrete specification of the constraints in form
of inequality or equality constraints. For the remainder of the chapter we assume that the appearing
sets can be described by inequalities leading to the following formulation of the open-loop optimal
control problem to solve in NMPC:

min
ū(·)

J(x̄(·), ū(·)) (3.1a)

subject to: ˙̄x=f(x̄, ū), x̄(t)=x(t) (3.1b)

c(x̄(τ), ū(τ)) ≥ 0, τ ∈ [t, t + Tp] (3.1c)

e(x̄(t+ Tp)) ≥ 0. (3.1d)

Here c defines the set of feasible states and inputs and e the feasible terminal region. Note that
this reformulation does not change the overall setup and is only needed for describing the numerical
solution strategies.

3.2.1 Solution by Direct Methods

There exist a variety of different approaches to solve the optimal control problem (3.1), see for ex-
ample (Binder et al., 2001; Bryson and Ho, 1969; Vinter, 2000; Bertsekas, 2000). Typically so called
direct solution methods (Binder et al., 2001; Biegler and Rawlings, 1991; Pytlak, 1999; Mayne, 1995;
Diehl, Findeisen, Nagy, Bock, Schlöder and Allgöwer, 2002) are used, i.e. the original infinite di-
mensional problem is turned into a finite dimensional one discretizing the input (and possibly also the
state).

Basically this is done by parameterizing the input (and possibly the states) by a finite number of
parameters and to solve/approximate the differential equations during the optimization. In principle
any parameterization of the input can be chosen, i.e. the parameterized input is given by

ū(τ ; q), τ ∈ [t, t+ Tp] (3.2)

where the q is the vector of parameterization parameters. The parameterized ū(τ ; q) might for ex-
ample be given by a sum of basis functions such as a Fourier series or the input is parameterized as
piecewise constant.

While the space of free parameters after the input parameterization is finite dimensional, the con-
straints on the inputs and states do lead to a semi-infinite optimization problem. Even so that the
input constraints can often be rewritten as constraints on the input parameterization parameters lead-
ing to a finite number of input constraints, the state constraints are more difficult to capture. They are
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either enforced by adding an exact penalty term to the cost function or are approximately enforced at a
finite number of time points over the prediction horizon. The resulting finite dimensional optimization
problem takes the form:

min
q
J(x̄(·), ū(·; q)) (3.3)

subject to the state and input constraints and the system dynamics.

Mainly three strategies for the solution of the NMPC optimal control problem using mathematical
programming can be distinguished (Pytlak, 1999; Binder et al., 2001; Biegler and Rawlings, 1991).

Sequential approach/feasible path approach:
In the sequential approach (de Oliveira and Biegler, 1994; Hicks and Ray, 1971; Kraft, 1985) the
control is finitely parameterized in the form ū(τ ; q) and the state trajectories are eliminated by nu-
merically integrating the differential equation and cost. Only the control parameterization parameters
remain as degree of freedom in a standard mathematical program given by (3.3). For each evaluation
of the cost J in the solution of the mathematical program the differential equation and the cost func-
tion are numerically integrated using the current guess of the input parameterization parameters of the
optimizer. Thus, the name sequential or “feasible path approach”, since the optimization steps and
the simulation are performed sequentially leading to a valid/feasible state trajectory. The sequential
solution method is depicted in Figure 3.1.

t

t + Tp

t + Tp

t

Optimizer

q J ,c, e

q∗, J∗

Simulator/Integrator

x̄(τ)

ū(τ ; q)

F, ū(τ ; q)
˙̄x = f(x̄, ū)

Figure 3.1: Sequential solution methods.

Simultaneous approach:
In the simultaneous approach the solution to the differential equation and the optimization is obtained
simultaneously. For this purpose the differential equations are discretized and enter the optimiza-
tion problem as additional constraints. Typical simultaneous approaches use collocation methods to
parameterize/discretized the differential equations. In the collocation methods (Tsang et al., 1975;
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Biegler, 2000; Cuthrell and Biegler, 1989) collocation is applied to the differential equations. The
resulting nonlinear programming problem is very large but also rather sparse. This can be exploited
to achieve an efficient solution.

Direct multiple shooting approach:
In the direct multiple shooting approach (Bock and Plitt, 1984; Tanartkit and Biegler, 1996; Leinewe-
ber, 1998; Bock, Diehl, Leineweber and Schlöder, 2000) the optimization horizon of interest is divided
into a number of subintervals with local control parameterizations. The differential equations and cost
on these intervals are integrated independently during each optimization iteration based on the cur-
rent guess of the control. The continuity/consistency of the final state trajectory at the end of the

t + Tp

t + Tp

Optimizer

t

t

Simulator/Integrator

q∗i , J∗

ū0(τ ; q0)

ūN−1(τ ; qN−1)

x0(τ)

F, ū(τ ; q), ˙̄x = f(x̄, ū)

Figure 3.2: Simultaneous solution with multiple shooting.

optimization is enforced by adding consistency constraints to the nonlinear programming problem.
The resulting nonlinear program takes a special sparse structure which can be utilized for an efficient
solution.

Remark 3.1 Besides the aforementioned direct solution approaches other approaches for the efficient

solution of the open-loop optimal control problem exist, see for example (Binder et al., 2001; Bryson

and Ho, 1969; Vinter, 2000; Bertsekas, 2000).

We especially mention the class of approaches outlined in (van Nieuwstadt and Murray, 1998; Ma-

hadevan and Doyle III, 2003; Petit et al., 2001) for differentially flat systems (Fliess et al., 1995; Fliess

et al., 1999). These approaches utilize that for differentially flat systems a direct algebraic relation

between the “output” and its derivatives and the input exists. This allows to reformulate the optimal

control problem as a pure functional optimization. If the output is parameterized by suitably often

differentiable basis functions, a static optimization problem results. However, the algebraic relation

between the “output” and its derivatives and the input must be known explicitly. Furthermore, state

and input constraints do complicate the considerations.
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A closely related approach is based on ideas of input-output or input-to-state linearization. Basically

the system is transformed to Byrnes Isidori normal form (Isidori, 1995) in which the appearing non-

linearity can be compensated by a suitable “compensation-term” (Nevistić and Morari, 1995; Primbs

and Nevistić, 1997; Kurtz and Henson, 1997). The resulting system is linear in the transformed coor-

dinates. Thus, a stabilizing linear MPC design, which can be solved computational efficiently, can be

used. However, even linear state and input constraints in the original coordinates do result in nonlin-

ear constraints that cannot be directly integrated in a linear predictive controller. Furthermore, the

quadratic objective must be formulated in the transformed, often artificial coordinates.

The method exploited in the following is based on the direct multiple shooting approach.

3.3 Efficient Solution by Direct Multiple Shooting

In this section we review the direct multiple shooting approach and describe its application to the
NMPC optimal control Problem 2. Furthermore, we describe important factors, which, if taken
into account, can lead to a significant decrease of the required computation time. The resulting dy-
namic optimization scheme for NMPC is implemented in a special variant of the multiple shooting
based dynamic optimization package MUSCOD-II (Leineweber, 1998). A detailed description of
the implementation and numerics can be found in (Diehl, Findeisen, Nagy, Bock, Schlöder and All-
göwer, 2002; Diehl, 2002; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder, 2002).
Note that while direct multiple shooting allows the consideration of index-one DAE systems (Bock
and Plitt, 1984; Bauer et al., 1999), we do only consider ODEs here.

3.3.1 Basics of Direct Multiple Shooting

As in all direct solution methods, the input signal u(τ), τ ∈ [t, t + Tp] is approximated by a suitable
finite parameterization. As outlined in the previous section in direct multiple shooting (also in most
collocation methods) the input signal is defined on a disjoint multiple shooting grid on which locally
supported control parameterizations are used. We assume that the multiple shooting grid is given by
the partition πo defined by

τ0 = t < τ1 < τ2 < . . . < τN = t+ Tp. (3.4)

Here and in the following the superscript o stands for optimization. Note that the partition πo
[t,t+Tp]

of the optimization problem is in general independent of the partition π defining the recalculation
instants of the NMPC controller and that the time δo

i = τi+1 − τi between the shooting nodes τi

does not have to be constant. To obtain a sufficiently good approximation of the infinite dimensional
optimal control problem it is desirable to make π̄o

[t,t+Tp] � π̄. Given this grid, the input on each of the
multiple shooting intervals is given by the local input parameterization

ūi(τ ; qi), τ ∈ [τi, τi+1), i = 0, 1, . . .N−1, (3.5)
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where ūi is a suitable basis-function parameterized in terms of the parameters qi. The key requirement
for the efficient solution is that the inputs ūi are only locally supported on each multiple shooting
interval, i.e. the parameters qi only influence the input on the interval [τi, τi+1). If continuity of the
input between intervals is required, additional constraints can be introduced (Diehl, 2002; Leineweber,
1998). For simplicity of presentation we assume that the input is parameterized as piecewise constant,
i.e.

ūi(τ ; qi) = qi = ūi. (3.6)

The consideration of “independent” input parameterizations on the multiple shooting intervals is
done to allow that the solutions of the system ODEs on these intervals can be considered as decou-
pled/independent from each other. For this purpose the initial conditions of the states at the beginning
of each interval are introduced as additional degrees of freedom in the optimization problem, i.e.
N + 1 additional variables s̄i ∈ R

n, i = 0, . . . , N denoted as node values are introduced. Besides s̄N

all of these serve as initial values for the N decoupled initial value problems

˙̄xi(τ ; s̄i, ūi) = f(x̄i(τ ; s̄i, ūi), ūi), τ ∈ [τi, τi+1), with x̄i(τi; s̄i, ūi) = s̄i i = 0, . . . , N−1 (3.7)

Given the values of s̄i and ūi the solution of the N initial value problems define N trajectories
xi(τ ; s̄i, ūi), see Figure 3.3. The cost contribution of the multiple shooting interval i is given by

τ1 τN = t + Tp

τN = t + Tp

τN−1τ2

. . .

. . .

t = τ0

t = τ0

ū0

ū1

ūN−1

s̄1

s̄0

s̄N−1

s̄N

x̄1(τ ; s1, q1)

x̄0(τ ; s0, q0)

x̄N−1(τ ; sN−1, qN−1)

Figure 3.3: Multiple shooting considering N decoupled multiple shooting intervals and using a constant input

parameterization given by the ūi.

∆Ji(ūi, s̄i, τi, τi+1) =

∫ τi+1

τi

F (x̄i(τ ; s̄i, ūi), ūi)dτ. (3.8)

The additional degrees of freedom s̄i introduced do lead to a special structure in the equations ap-
pearing in the sub iteration of the resulting nonlinear program that can be utilized to achieve a fast
solution. However, to obtain a consistent solution once the nonlinear program has converged, the
consistency of the state trajectories must be guaranteed. This in done by introducing the following
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consistence equality constraints requiring that the final predicted state x̄i(τi+1; s̄i, ūi) in each of the
multiple shooting intervals matches the differential node value of the “next” interval s̄i+1

s̄i+1 = x̄i(τi+1; s̄i, ūi), i = 0, . . . , N − 1. (3.9)

It is only required that these constraints are satisfied once the optimization algorithm used has con-
verged. During the solution process they can be violated, allowing to use the additional degrees of
freedom for a faster solution. Since the consistency condition (3.9) has to be satisfied once the algo-
rithm has converged, the variables node values s̄i introduced do not really represent additional degrees
of freedom.

With respect to the state and input constraints often an approximation is used. The path constraints
(3.1c) are approximated via N + 1 inequality constraints at the multiple shooting nodes, i.e.

c(s̄i, ūi) ≥ 0, i = 0, 1, . . . , N. (3.10)

While this does not guarantee satisfaction of the constraints in between the nodes, it is often satisfying
in practice. Other sequential and simultaneous approaches use similar approximations.

The finite dimensional nonlinear program (NLP) resulting from the introduction of the node values s̄i

and the constraint approximation takes the following form:
NMPC Direct Multiple Shooting NLP

min
ūi,s̄i

(
N−1∑

i=0

∆Ji(ūi, s̄i, τi, τi+1) + E(s̄N )

)

(3.11a)

subject to: s̄i+1 = x̄i(τi+1; s̄i, ūi), i = 0, . . . , N − 1 (3.11b)

s̄0 = x(t), (3.11c)

c(s̄i, ūi) ≥ 0, i = 0, 1, . . .N (3.11d)

e(sN ) ≥ 0. (3.11e)

This finite dimensional NLP has certain advantages with respect to the underlying structure that can
be utilized for a fast numerical solution.

3.3.2 Solution and Properties of the Direct Multiple Shooting NLP

The multiple shooting NLP (3.1) is typically solved by a specially tailored sequentially quadratic
programming (SQP) algorithm (Leineweber, 1998; Bock, Diehl, Leineweber and Schlöder, 2000;
Bock and Plitt, 1984). Sequential quadratic programming is an iterative technique to find a point
satisfying the so called Karush-Kuhn-Tucker (KKT) necessary conditions (see for example (Nocedal
and Wright, 1999; Fletcher, 1987; Gill et al., 1981)) for a local optimum. In SQP a KKT point is
found by iterating on a quadratic programming (QP) sub problem based on the Lagrangian of the
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system. For simplicity we rewrite NLP (3.1) in the following form:

min
w
F (w) (3.12)

subject to G(w)=0 (3.13)

H(w)≥0. (3.14)

The vector w lumps the multiple shooting variables and controls:

wT =
[

sT
0 , u

T
0 , s

T
1 , u

T
1 , . . . , s

T
N

]

. (3.15)

The model dynamics/consistence constraints are contained in the equality constraint G(w) = 0,
whereas H(w) contains all (discretized) path and terminal constraints.

Initialized by an initial guess w0, a SQP method for the solution of this NLP iterates by

wk+1 = wk + αk∆wk, k = 0, 1, . . . . (3.16)

Here αk ∈ (0, 1] is a relaxation factor, and the search direction ∆wk is given by the solution of the
(QP) subproblem

min
∆w

∇F (wk)
T ∆w +

1

2
∆wT Ak ∆w (3.17)

subject to: G(wk) + ∇G(wk)
T ∆w=0 (3.18)

H(wk) + ∇H(wk)
T ∆w≥0 (3.19)

The matrix Ak is a suitable approximation of the Hessian ∇2
wL of the Lagrangian L = F (w) −

λT
GG(w) − λT

HH(w), where λG and λH are the Lagrange multipliers.

Introducing the multiple shooting variables si and the control parameterization with local support
leads to a special structure in the NLP problem and the resulting QP problems.

Specifically the (exact) Hessian of L has a sparse block diagonal structure. Similarly, the multiple
shooting parameterization introduces a characteristic block sparse structure of the Jacobian matrices
∇G(w)T and ∇H(w)T . We do not go into further details and refer to (Bock, Diehl, Leineweber and
Schlöder, 2000; Diehl, Findeisen, Nagy, Bock, Schlöder and Allgöwer, 2002; Diehl et al., 2001). For
performance and numerical stability it is of crucial importance that these structures of the NLP and
QP are fully exploited. Crucial for an efficient solution are

• approximated Hessian updates should preserve the block diagonal structure of the exact Hes-
sian.

• the QP solver used should exploit the block sparse structure.
• specialized robust and fast ODE (DAE) integrators should be used providing only the reduced

gradients and Hessian blocks needed.

All these considerations have been taken into account in the dynamic optimization package
MUSCOD-II (Leineweber, 1998) and in the specially adapted version for NMPC as described in
detail in (Diehl, 1998; Diehl, Findeisen, Nagy, Bock, Schlöder and Allgöwer, 2002), which provides
a flexible and efficient solution method for dynamic optimization problems.
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3.3.3 Further Twists to Achieve Fast Solutions in the Case of NMPC

Between successive recalculation instants certain features can be utilized. For example, if a constant
recalculation time δi = δr, which is equal to the length of the shooting intervals δo = τi+1−τi, is used,
than major parts of the input, state, Hessian and derivative information obtained at the recalculation
time ti can be reused at the next recalculation time ti+1 using a shifting strategy. Even if δr and δo

are not equal and no shifting is performed, the values of the previous recalculation instant are a good
initial guess at the next calculation.

More specifically, the following factors should be taken into account:
Use of Fast Integration Algorithms: As already mentioned, the use of special integrators is of crucial
importance. The solution of the initial value problems and the corresponding derivatives are com-
puted simultaneously by specially designed integrators which use the principle of internal numerical
differentiation. In particular, the integrator DAESOL (see (Bauer et al., 1997; Bauer, 2000)), which
is based on the backward-differentiation-formula (BDF), is used in the special NMPC MUSCOD-II
implementation.
Initial Value Embedding Strategy (Bock, Diehl, Schlöder, Allgöwer, Findeisen and Nagy, 2000): Op-
timization problems at subsequent recalculation instants differ only by different initial values that are
imposed via the initial value constraint s̄0 = x(ti). Accepting an initial violation of this constraint,
the solution trajectory of the previous optimization problem can be used as an initial guess for the
current problem. Furthermore, all problem functions, derivatives as well as an approximation of the
Hessian matrix are already available for this trajectory and can be used in the new problem, so that the
first QP solution can be performed without any additional ODE solution. This approach differs from
a conventional warm start techniques for NMPC (Biegler and Rawlings, 1991; Liebman et al., 1992),
which typically initialize the NLP variables by integrating the ODE with the old (or shifted) input and
the current x(t).
Efficient Treatment of Least Squares Cost Functions: An efficient approach to obtain a cheap Hessian
approximation – the constrained Gauss-Newton method – is recommended in the special case of a
least squares type cost function. In NMPC, the involved least squares terms arise in integral form
∫ tj+1

tj
‖l(x, u)‖2

2 dt. Specially adapted integrators that are able to compute a numerical approxima-
tion of the Gauss-Newton Hessian for this type of least squares term have been developed (Diehl
et al., 2001).

The consideration of these factors does improve robustness and speed of the optimization algorithm
significantly and have been implemented in the special NMPC version of MUSCOD-II, see (Diehl,
Findeisen, Nagy, Bock, Schlöder and Allgöwer, 2002; Diehl et al., 2001).

3.4 Control of a High-Purity Distillation Column

In the following, we apply the derived solution method for the NMPC optimal control problem in
simulations and experiments considering the control of a high purity binary distillation column.
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The column has 40 trays and we consider the separation of Methanol and n-Propanol. The binary
mixture is fed into the column (compare Figure 3.4) with the flow rate F and the molar composition
xF . The products are removed at the top and bottom of the column with the concentrations xD and

manipulated
variables

measured variables
disturbance
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B

xD

V

xB

D

F , xF

40

28

21

14

1
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T14, T21, T28

L, Q

Q

Figure 3.4: High purity Distillation column.

xB . The manipulated variables are the reflux flow L and the vapor flow V (simulation) or the heat
input Q to the column (experiments). If not otherwise mentioned, we assume all states as directly
available for state-feedback. The control problem is to maintain the specifications on the product
concentrations xB and xD despite the occurrence of disturbances.

Different models for the distillation column are available. Modeling of the distillation column under
the assumption of constant relative volatility, constant molar overflow, no pressure losses, no energy
balances and hydrodynamics leads to a 42nd order ODE model. The states are the concentrations on
the trays, in the reboiler and in the condenser. Based on this model a reduced 5th order ODE model
utilizing the so called wave propagation phenomena is available (Rehm and Allgöwer, 1996; Findeisen
and Allgöwer, 2000a), that has as states the concentrations in the reboiler, condenser and feed trays
as well as the wave positions for the stripping and rectifying sections, respectively. Furthermore a
164th order model with 42 differential states (concentrations on the trays) and 122 algebraic states
(liquid flows, vapor flows and temperatures on each tray) is available. Detailed descriptions of these
models can be found in (Nagy et al., 2002; Nagy, Findeisen, Diehl, Allgöwer, Bock, Agachi and
Schlöder, 2000).

3.4.1 Simulation Results

For all simulations the plant is given by the 164th order model and the recalculation time is fixed
to δr = 30s. All calculations are carried out on a Digital Alpha XP 1000 Workstation using the
described specially tailored version of MUSCOD-II. If not otherwise stated the time span δo between
two multiple shooting nodes is constant and the same as the recalculation time δr of the NMPC
controller.
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Figure 3.5: Concentration wave profile.

Basic controller setup:
The control problem is to maintain the specifications on the product concentrations xB and xD despite
the occurrence of disturbances. In the cost function F the quadratic deviation of these variables and
the inputs from their steady-state values are weighted. As usual in distillation control, xB and xD

are not controlled directly. Instead an inferential control scheme, which controls the deviation of
the concentrations on tray 14 and 28 from the set-points is used. Since for the standard set-point
conditions the turning point positions of the waves approximately correspond to these trays, one can
expect good control performance with respect to xB and xD, compare Figure 3.5. Even small changes
in the inflow or feed conditions lead to significant changes in the wave positions and thus of the
concentrations on trays 14 and 28. However, the changes in the product concentrations xB and xD

are comparable small. Thus, if the concentrations at the turning points are controlled well, one can
expect that the product concentrations are satisfying.

Due to these considerations only the concentration deviations from the set-point on trays 14 and 28
are penalized in the stage cost-function F :

F (x, u) =

∥
∥
∥
∥
∥

[

x14 − x14s

x28 − x28s

]∥
∥
∥
∥
∥

2

Qw

+

∥
∥
∥
∥
∥

[

L− Ls

Q−Qs

]∥
∥
∥
∥
∥

2

R

. (3.20)

To avoid offset between the different controllers due to model plant mismatch the steady-states used in
the controller have been adjusted accordingly to guarantee offset free control for the nominal steady-
state. Furthermore, for comparability it is assumed that the disturbances in the feed concentration can
be measured and thus are known by the controller if not otherwise stated.

Comparison of different NMPC schemes:
In this section we compare infinite horizon NMPC with QIH-NMPC and SAIH-NMPC as introduced
in Section 3.1. All three controllers use the 164th order model for prediction (no model plant mis-
match). For the calculation of the terminal region and terminal penalty term for the QIH-NMPC
approach and the SAIH-NMPC approach, we use a LQR controller. This controller is derived on the
basis of the linearization of the system around the considered steady-state. Since this controller has
a rather large region of attraction, no terminal region is considered in the SAIH-NMPC approach.
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The terminal region and the quadratic upper bound for the QIH-NMPC approach is found by direct
optimization (Findeisen and Allgöwer, 2000a; Findeisen and Allgöwer, 2000a). The infinite horizon
NMPC scheme was approximated by an NMPC scheme with 40 control intervals plus a prediction
interval of 10000s at the end, where the input was fixed to the steady-state value. Simulation exper-
iments showed that the performance does not change much if more than 40 intervals are used. For
the SAIH-NMPC approach 5 control intervals were used. The end penalty term E was calculated
by simulating the system with the local linear controller for another 10000s at the end of the control
horizon. In the QIH-NMPC scheme also 5 control intervals were used. To allow the upper bounding
of the infinite horizon cost by the (quadratic) penalty term, the final predicted state was constrained
to lie in the quadratic terminal region.
We exemplary show the simulation results for a rather drastic scenario, see Figure 3.6. At t = 270s
the reflux is decreased from 4l/h to 0.5l/h (reflux breakdown), while the vapor flow V is kept con-
stant, i.e. the manipulated variables are fixed to these values. After 180s the controller is switched
on again. This leads to a rather large offset from the steady-state. All three controllers nicely return
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Figure 3.6: Performance and computational demand of different NMPC schemes.

the system to the steady-state. Not surprisingly the best performance is achieved by the “infinite”
horizon controller. However, this controller cannot be implemented in real-time, since the solution
of one open-loop optimal control problem in general requires more than the 30 seconds, compare
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Figure 3.6. In comparison SAIH-NMPC approach as well QIH-NMPC controller are able to meet the
real-time requirement. As expected, the QIH-NMPC approach does lead to a small degradation in the
performance. However, the safety margin to the maximum allowed CPU time is significantly higher
as for the SAIH-NMPC approach.

Influence of the model size on performance and computational demand:
In this part the influence of different model sizes and prediction horizon length on the necessary
computation time for the QIH-NMPC scheme are examined. The controller setup is the same as in
the previous section. Table 3.1 shows the average and maximum CPU time for a disturbance scenario
in the feed concentration xF . One can see that the QIH-NMPC scheme using MUSCOD is feasible

Table 3.1: Comparison of the necessary CPU time.

model N=5 (150s) N=10 (300s) N=20 (600s)
size max avrg max avrg max avrg

5 0.4 0.1 1.9 0.3 5.8 0.6

42 0.9 0.4 2.1 0.8 6.8 2.0

164 18.8 1.9 36.6 4.5 47.5 5.2

for the 5th and 42nd order models even for a prediction horizon of 600s (N = 20). Even in the case of
the 164th order model the predictive controller is real-time applicable if a prediction horizon ofN = 5

is used. The CPU time only grows “linearly” with the horizon length. For comparison, the solution
time for a zero-terminal constraint NMPC scheme requires a minimum horizon length of N = 20 to
be feasible and the solution time for the 5th order model increase to 6.8 seconds. Thus, the use of
suitable NMPC strategies that require a reduced computational load has a significant influence on the
necessary solution time.

Computational delay and state estimation:
In this part we briefly outline the influence of a state observer and the computational delay due to the
solution time of the optimal control problem on the closed-loop. This is mainly done in preparation
for the experimental results presented in Section 3.4.2 and for the considerations in Section 4.5.

For this purpose we consider again the QIH-NMPC as described in Section 3.1. The simulation setup
is similar to the experimental setup presented in the next section. So far we assumed that all states can
be accessed directly by measurements. In reality this is however not possible. In the case of the pilot
scale distillation column we assume that only the feed tray temperature and the temperature on the
14th and 28th tray are directly measurable. The remaining states are recovered by an Extended Kalman
Filter (EKF). Also the unknown “disturbances” xF and F are estimated by the EKF by augmenting
the system model by two additional integrators.

Based on the system parameters estimated by the EKF in a first step, the system state at the next
recalculation instant is predicted. The open loop optimal control problem is then solved for the
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Figure 3.7: Behavior of the closed-loop including an EKF for state estimation.

predicted state. The resulting first input is implemented at the next control instant and the procedure
is repeated. This is necessary, since the solution of the dynamic optimization problem cannot be
obtained instantaneously. However, as shown in Chapter 4, if the computational delay is considered
in this way, the stability properties remain the same as in the nominal case.

Figure 3.7 shows the behavior of the closed-loop considering three different model sizes with respect
to feed concentration disturbances. The concentrations are nicely kept in a narrow band around the
desired steady-state even so that the EKF is used for the state recovery. One can see that the solution
is easily possible even for the 164th order model. The reduced maximum computational time in
comparison to the state-feedback case examined in the section before is mainly due to the “smoothing”
effect of the EKF. Since the disturbance and the system state are estimated by the observer and thus do
not change instantaneously, the optimization problems also change only little from recalculation time
to recalculation time. Thus, often one SQP iteration is sufficient to obtain a new optimal solution.

This also stipulates the use of the so called real-time iteration scheme (Diehl, Findeisen, Schwarzkopf,
Uslu, Allgöwer, Bock and Schlöder, 2002), which only performs one SQP iteration per recalculation
instant, see Section 3.5.
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3.4.2 Experimental Verifications

In this section we present experimental results verifying the obtained simulation results.

The experimental implementation was carried out on a pilot plant distillation column situated at the
Institut für Systemdynamik und Regelungstechnik of the University of Stuttgart. It has a diameter of
0.1m and a total height of 7 m and temperature measurements on all trays and in the reboiler as well
as measurements of the flows are available. The overhead vapor is totally condensed in a water cooled
condenser, which is open to the atmosphere. The reboiler is heated electrically. Thus, in difference
to the simulation results now the volumetric liquid reflux flow Lvol of the condenser (which can be
measured) and the heat input Q to the boiler are the manipulated variables.

The column is coupled to a process control system. All computations are performed on a standard PC
running Linux (AMD Athlon, 1100Mhz). The data communication with the process control system
is performed via ftp, allowing a reliable input/output operation all 10s.

First experiments showed that in order to achieve good control performance, the hydrodynamics in
the column should not be neglected. Thus, based on the 164th order model a 204th order model (122
algebraic states and 82 differential states) including hydrodynamics is derived (Diehl et al., 2001;
Diehl, 2002). Some of the model parameters where estimated based on experimental data using a
special off-line version of MUSCOD-II.

The stage cost function F now weighs the temperatures instead of the concentrations, which cannot be
directly measured. The states are estimated from the temperature measurements on the 14th, 28th and
21th (feed) tray using an extended Kalman filter. Furthermore, the EKF is fed with the measurements
of the volumetric feed flow Fvol and the manipulated variables are Lvol and Q. The overall NMPC
based controller setup is shown in Figure 3.8. This scheme was implemented and compared to a
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Figure 3.8: Setup PI controller (left) and NMPC controller (right) for the experimental validation.

conventional PI control scheme. The PI control scheme usually employed to control the column
consists of two decoupled SISO PI loops. One uses the heat input Q to control the temperature on
the 14th tray, the other uses the reflux L to control the temperature T28. The setup of the PI loop is
also shown in Figure 3.8. Figure 3.9 exemplary shows the temperature on the 28th tray as well as
the heat input Q to the column for both controllers. Starting from a steady-state, the feed flow F is
increased at t = 1000s by 20 percent. The NMPC controller is able to complete the transition into
the new steady-state in approximately 1000s with a maximum deviation of T28 of 0.3oC. Even though
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Figure 3.9: Experimental results NMPC and PI controller.

no extensive tuning of the NMPC controller was performed, the temperature only shows a maximum
deviation of 0.8oC and completes the transition to the new steady-state with an inevitable offset of
0.25oC in T28 after 1500s. A detailed discussion of the experimental results obtained can be found
in (Diehl et al., 2001; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder, 2003).

The presented results underpin that an application of NMPC schemes with reduced computational
demand is possible even nowadays, if specially tailored optimization schemes are used. Furthermore,
the closed-loop shows good performance without the need to use a reduced order model or much
tuning.

3.5 Efficient Solution via the Real-time Iteration Scheme

So far we assumed that the SQP algorithm used for the solution of the NMPC optimal control prob-
lem is iterated until convergence. As already briefly mentioned, often optimization problems from
one recalculation instant to the next do only differ minimally. Thus, as proposed in (Diehl, Find-
eisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder, 2002; Diehl, Findeisen, Schwarzkopf, Uslu,
Allgöwer, Bock and Schlöder, 2003; Diehl, Findeisen, Nagy, Bock, Schlöder and Allgöwer, 2002) it
might be sufficient to actually stop iterating the SQP before convergence. Basically it is proposed to:

• Firstly perform only one SQP iteration per recalculation instant, allowing to decrease the recal-
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culation time δr which is for the full iteration scheme mainly limited by the time required to
solve the NLP. As shown in the simulation results in Section 3.4.1 often even one iteration is
sufficient to nearly converge. Also the approach is satisfactory if one already starts sufficiently
close to a valid solution and maintains the convergence properties of direct multiple shooting.

• Secondly, to decrease the computational delay between the state measurement and the avail-
ability of a new valid input, to divide the calculation in a preparation phase and a fast feedback
phase. In the preparation phase all the time consuming preparations for one SQP step such
as integration of the differential equations (for example to obtaining G(w) in the SQP and its
derivatives) are performed. In the fast feedback phase only minor calculations are performed
leading to the new input based on the current measurement.

Further details can be found in (Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and Schlöder,
2003). In principle, the error introduced by such a real-time iteration scheme can be considered as
an external disturbance. In Chapter 5 it is shown that the closed-loop using sampled-data NMPC is
robustly stable if the disturbances (e.g. difference to the optimal solution) is sufficiently small. The
stability and convergence of the real-time iteration scheme is analyzed in detail in (Diehl et al., 2004;
Diehl, Findeisen, Allgöwer, Schlöder and Bock, 2003). There it is shown that closed-loop stability
under the real-time iteration scheme for discrete time systems is possible if the initial solution is
sufficiently close to the optimal solution manifold.

Figure 3.10 underpins that the application of the real-time iteration scheme to the distillation control
problem does lead to significant reduction of the required CPU time and good performance. Figure
3.10 shows the necessary CPU time and performance for a full iteration NMPC scheme and a real-time
iteration strategy. For comparison a similar situation to the one shown in Figure 3.9 is considered.

3.6 Summary

In this chapter we examined the question if the optimal control problem appearing in NMPC can
be solved efficiently, allowing for a real-time application of NMPC to realistically sized problems.
Specifically we outlined a tailored efficient mathematical programming based solution strategy using
direct multiple shooting as derived in the context of an NMPC real-time feasibility study (Nagy, Find-
eisen, Diehl, Allgöwer, Bock, Agachi, Schlöder and Leineweber, 2000; Diehl, 1998; Diehl, Findeisen,
Nagy, Bock, Schlöder and Allgöwer, 2002; Diehl et al., 2001; Findeisen, Allgöwer, Diehl, Bock,
Schlöder and Nagy, 2000; Findeisen, Nagy, Diehl, Allgöwer, Bock and Schlöder, 2001; Findeisen,
Diehl, Bürner, Allgöwer, Bock and Schlöder, 2002; Findeisen, Diehl, Uslu, Schwarzkopf, Allgöwer,
Bock, Schlöder and Gilles, 2002). To show the computational efficiency of this scheme we presented
simulation and experimental results for the control of a high-purity distillation column for the sep-
aration of a binary mixture. The main result of this section is that from a computational point of
view NMPC can even be nowadays applied to practically relevant processes. However, to allow for
real-time feasibility, one should use NMPC schemes that facilitate an efficient solution and utilize
specially tailored dynamic optimization schemes.
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Figure 3.10: Performance and CPU time comparison of real-time iteration scheme to full iteration scheme.

Note that the derived efficient solution approaches can be expanded to the optimization based state
estimation problem via moving horizon state estimation, as outlined in (Bürner, 2002; Findeisen,
Diehl, Bürner, Allgöwer, Bock and Schlöder, 2002).

While the presented results underpin the real-time applicability of NMPC from a computational view-
point, a series of practical and theoretical questions remain open. Specifically it is not clear, under
which conditions nominal stability and performance results for the closed-loop do hold in practice.
Some of the issues are:

• Computational and measurement delays: the numerical solution of the open-loop optimal con-
trol problem introduces a delay between the measured state and the implemented input, which
is often not taken into account. Furthermore, state and output measurement delays might be
present that should be taken into account or compensated.

• Model plant mismatch: the real plant often differs from the nominal plant model used for
predictions.

• External disturbances: external disturbances which are not taken into account.

• Numerical errors: the numerical solution of the optimal control problem introduces approxi-
mation errors in comparison to the nominal optimal input.

• Output-feedback: predictive control based on state space models is inherently a state-feedback
scheme. The system state is necessary for the prediction.

In the following chapters we investigate these issues in a more general framework, considering the
control of continuous time systems via sample-data open-loop feedback.
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Chapter 4

Stability of Sampled-data Open-loop
State-feedback

The results of the previous chapter underline that computationally the practical application of NMPC
is possible even nowadays. However, there are a series of open theoretical question with respect to
sampled-data open-loop NMPC. The remaining chapters provide answers to some of these questions.
Specifically we examine issues related to the stability of the closed-loop in the case of numerical
approximation errors in the solution of the optimal control problem, external disturbances, uncer-
tain parameters, model-plant mismatch, inevitable computational delays, measurement delays, and
stability conditions for the sampled-data open-loop output-feedback problem.

Most of the derived results are not limited to sampled-data NMPC. For this reason we consider in
the following a more general setup, the control of nonlinear systems using sampled-data open-loop
feedbacks. NMPC can be seen as one specific representative of this class of controllers.

In this chapter we specifically focus on the derivation of stability conditions for sampled-data open-
loop feedback. After a short introduction of the considered sampled-data open-loop setup, we derive
in Section 4.3 stability conditions that guarantee stability of the closed-loop. Notably, the derived
results allow for varying recalculation intervals and the consideration of constraints on inputs and
states. Furthermore, the results are not limited to controls that are continuous in the state. This
allows considering discontinuous feedbacks, as might for example be necessary for the control of
nonholonomic systems (Brockett, 1983; Fontes, 2003; Clark, 2001; De Luca and Giuseppe, 1995; As-
tolfi, 1996; Ryan, 1994). Section 4.4 presents two control approaches for which the derived stability
conditions are directly applicable. Section 4.4.1 shows that asymptotically stabilizing locally Lip-
schitz continuous instantaneous feedbacks can be adapted to sampled-data open-loop feedback by
feedforward simulation. This allows applying instantaneous feedbacks even in the case of state in-
formation available only at the recalculation instants. Section 4.4.2 outlines the application of the
derived stability result to sampled-data NMPC.

Besides the question of nominal stability we furthermore consider the practically important question
of measurement and computational delays. As shown in Section 4.5, sampled-data open-loop feed-
back allows a rather simple consideration of computational and measurement delays without loss of
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stability.

The obtained results are exemplified in Section 4.4.3 and 4.5.3 considering the control of a continuous
stirred tank reactor.

The derived nominal stability results lay the basis for the robustness and output-feedback consider-
ations in Chapter 5 and Chapter 6. The key observation utilized is that the nominal decrease in the
“sampled-data Lyapunov function” provides, under certain continuity assumptions, robustness with
respect to small external disturbances and excitations.

4.1 Sampled-data Feedback and Sampled-data Open-loop Feed-

back

Classical sampled-data control for continuous time systems refers to the control of a continuous time
plant using a discrete time feedback (Chen and Francis, 1995; Aström and Wittenmark, 1997; Franklin
et al., 1998) or vice versa. This problem is motivated by the fact that most controllers are implemented
using microprocessors. Typically, the interconnection between the discrete and continuous time is
achieved using suitable A/D and D/A converters (often referred to as sampler and zero-order holds),
see Figure 4.1.

ZOHcontroller
discrete time

ẋ(t)=f(x(t), u(t))
x(t)x(ti)

tti ti+1

u(ti) u(t)

u

δi

Figure 4.1: Sampled-data feedback.

Sampled-data control has received significant interest in recent years, see for example (Nes̆ić and
Teel, 2001; Nes̆ić and Laila, 2002; Hou et al., 1997; Chen and Francis, 1995) and references therein.

The main issue in sampled-data control for nonlinear systems is that for a continuous time nonlinear
system it is in general not possible to derive an exact discrete time model. Thus, for the design of
the controller one either has to use an approximated model to design the controller in discrete time,
or, after designing a continuous time controller, one implements an approximated version of this
controller in discrete time (Nes̆ić and Teel, 2001; Chen and Francis, 1995). The elementary question
for both design methods is, if the properties achieved in the design in one of the domains are preserved
in the other domain. One specific question is, if the stability of the closed-loop is retained even if
the controller is designed in continuous time, but implemented approximately in discrete time. With
respect to these questions a series of results have been obtained, see e.g. (Nes̆ić and Teel, 2001; Nes̆ić
and Laila, 2002; Nes̆ić et al., 1999).
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In comparison to the classical sampled-data control for continuous time systems we consider a slightly
modified problem. Specifically, we do not consider that the applied input is sampled/kept constant
in between the recalculation instants, compare Figure 4.2. Furthermore, we do not assume that the

tti ti+1

x(ti)
ẋ(t)=f(x(t), u(t))

x(t)sampled-data open-loop

feedback

δi uSD(·;x(ti), ti)

u

Figure 4.2: Sampled-data open-loop feedback.

recalculation times are constant.

There are several reasons for not considering to sample-and-hold the input in between the recalcu-
lation times. Firstly microprocessors and A/D and D/A converters are becoming faster and faster.
Frequently, the speed of the A/D and D/A converters/microprocessors are not the limiting factors for
practical implementations anymore, at least for control problems typically encountered in the process
industry1. By now there even exist process control systems allowing the direct consideration and
use of continuous time controller representations. The corresponding differential equations are then
numerically integrated on-line.

Rather than the speed of the A/D and D/A converters, typically slow state “measurements” are key
limiting factors. Slow state measurements might for example be due to slow sensors such as con-
centration measurements, or due to the required extraction of the state information from secondary
measurements involving for example computationally intense image processing. Furthermore, the re-
calculation time might be, as for example in the case of NMPC, dictated by the time required to solve
a computationally expensive optimal control problem. Typically, the sampling time (in the following
denoted by δS) of the process control system, at which the A/D and D/A converters operate, is in
the order of milli- or even micro-seconds, whereas the recalculation time and availability of sensor
measurements might be in the order of seconds. If in this case the input is kept constant in between
recalculation instants, the achievable performance can degrade significantly. One possibility to over-
come this problem is to open-loop apply an input signal obtained at the recalculation time ti. Even
so the D/A converters/sample-and-hold elements will lead to an approximation error of the open-loop
input, these effects can often be neglected, compare Figure 4.3. The resulting approximation error
can rather be considered as a (small) disturbance, which sampled-data open-loop feedbacks are, under
certain conditions, able to reject, see Chapter 5.

A closely related aspect of considering continuous inputs instead of “constant” ones is that constant
inputs with fixed recalculation/sampling time do limit the achievable performance in the sense that

1The situation is different for control problems typically encountered in the aerospace or automobile industry. Such
processes often require a feedback response in the order of milliseconds or even microseconds.
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Figure 4.3: Recalculation time, sampling time and sample-and-hold.

asymptotic convergence to the origin/reference trajectory can only be achieved by decreasing the
recalculation time to zero (Clarke et al., 2000; Fontes, 2003).

One question occurring is, whether there are any controller designs available that can provide for a
single state measurement an input signal rather then a “fixed” input value? Luckily, by now a whole
series of controller design exist that can provide open-loop input trajectories for one single state
measurement. A classical example is optimal control. Further examples are sampled-data open-loop
NMPC (Fontes, 2000b; Findeisen et al., 2003e) or open-loop input generators as outlined in (Alamir
and Bonard, 1999; Marchand and Alamir, 1998), which might for example be based on differential
flatness or other structural considerations. Furthermore, as shown in Section 4.4.1, any stabilizing
instantaneous feedback can be used to obtain suitable open-loop input trajectories by feedforward
simulation.

Summarizing, in comparison to classical sampled-data control, where typically the input is kept con-
stant in between recalculation instants, we consider the case that the applied input in between re-
calculation instants is given by a “continuous” signal. The unavoidable approximation effects of
sample-and-hold elements, which are present in any digital implementation, are assumed to be small
and can be considered as small disturbances acting on the closed-loop system, compare Chapter 5.

4.2 Basic Setup

In this chapter we consider time-invariant nonlinear systems given by

ẋ(t) = f(x(t), u(t)) t ≥ 0, x(0) = x0 ∈ X0, (4.1)

where x(t) ∈ R
n denotes the system state. The input is denoted by u(t) ∈ U a.e., and X0 denotes

the set of considered initial conditions. Here the set X ⊇ X0 denotes the set of admissible states and
U ⊆ R

m denotes the set of admissible inputs. The vector field f :Rn×R
m→R

n is assumed to satisfy

Assumption 4.1
f :Rn×R

m→R
n is continuous in its arguments and locally Lipschitz continuous in x.

Our objective is to derive stability conditions for system (4.1) under sampled-data open-loop feedback
of the form:

u(t) = uSD(t; x(ti), ti). (4.2)
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Here uSD denotes the open-loop input trajectory of the sampled-data feedback controller as defined
later. It is based on the state information x(ti) at the recalculation instant ti, compare Figure 4.2.

Remark 4.1 We only consider “static” feedbacks, i.e. we assume that the input generator does not

have an internal state, i.e. it only depends on the state x(ti) at the recalculation time. This is mainly

done for simplicity and based on the fact that predictive controllers as well as other existing suitable

open-loop input generators (Alamir and Bonard, 1999; Marchand and Alamir, 1998) do not possesses

an internal controller dynamics. However, it is possible to expand the results to dynamical controllers,

see Section 4.3.1.

We refer to an admissible input generator as

Definition 4.1 (Admissible input generator)

An input generator is called admissible with respect to the sets X0 ⊆ X ⊆ R
n, U ⊆ R

m, and a

partition π, if for any x ∈ X0 and any ti ∈ π

1. uSD(·; x, ti) ∈ L∞([ti, ti+1],U)

2. the solution x(·; x(ti), uSD(·; x(ti), ti)) of (4.1) under the input uSD starting from x(ti) is ab-

solutely continuous on [ti, ti+1) with

(a) x(τ ; x(ti), uSD(·; x(ti), ti))∈X ∀τ ∈ [ti, ti+1)

(b) x(ti+1; x(ti), uSD(·; x(ti), ti)) ∈ X0.

Here L∞([a, b],U) denotes Lebesgue measurable and essentially bounded functions mapping from
[a, b] into the admissible input set U (a.e.). In other words, a feasible input generator maps from an
initial state inside the set X0 and a sampling instant ti to an input for [ti, ti+1) that is measurable,
satisfies the input constraints almost everywhere (besides a number of points with measure zero),
keeps the state inside of the allowed set of states X , and (at least) renders the set X0 invariant at the
recalculation instants.

Note that Definition 4.1 does not require nor exclude input generators that produce piecewise con-
stant (or in an other form parameterized) inputs (Clarke et al., 2000; Clarke et al., 1997; Ceragi-
oli, 2002; Fontes, 2003). It is rather required that the solution of the differential equation is absolutely
continuous for all x(ti) ∈ X0, ti ∈ π on [ti, ti+1). In the following section we derive general stability
conditions for sampled-data open-loop feedback.

4.3 Convergence of Sampled-data Control

In this section we derive conditions for stability of the closed-loop with respect to a set A ⊆ X . The
consideration of a set allows to look at the stabilization problem in a wider context, i.e. one can for
example consider the stabilization of orbits, robust stabilization problems (compare Chapter 5), or
the stabilization of regions for which the system does not even possess a steady state. Practically, the
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consideration of a region rather then a fixed set-point is of interest, since often specifications are not
given as one fixed, strictly achievable value. Rather they are often given in terms of zones or bands of
acceptable performance. Note that the important case of a (single) steady state xs is contained in the
derived result setting A={xs}.

In the following we denote by ‖x‖A the distance of a point to a set A defined as follows

Definition 4.2 (Distance to a set)
Given a closed set A ⊂ R

n, and a point x ∈ R
n we denote

‖x‖A = inf
z∈A

‖x− z‖ (4.3)

as the distance of the point x to the set A.

We furthermore denote a function as positive definite with respect to a set A (Yoshizawa, 1966), if

Definition 4.3 (Positive definiteness with respect to a set)
A scalar function α(x) defined for x ∈ X is denoted as positive definite with respect to a set A, if

α(x) = 0 for x∈A and if for each ε > 0 and each compact set X̃ ⊆ X , there exist positive numbers

δ(ε, X̃ ) such that

α(x) ≥ δ(ε, X̃ ) for x ∈ X̃ /N (ε,A), (4.4)

where N (ε,A) represents the set consisting of A and it’s ε neighborhood, i.e. N (ε,A) = {x ∈
R

n|‖x‖A ≤ ε}.

The following stability result is closely related to ideas utilized in stabilizing sampled-data open-loop
NMPC approaches (Fontes, 2000b; Chen and Allgöwer, 1998b; Jadbabaie et al., 2001). Furthermore,
the results are connected to recent results on the link between asymptotic stability and feedback
stabilization, see e.g. (Clarke et al., 1997; Marchand and Alamir, 2000; Shim and Teel, 2003). For the
proof of the stability result we need the following lemma:

Lemma 4.1
Let A be a compact set and β : X → R

+ be a positive definite function with respect to A. Further-

more, let x(·) : R
+→X be an absolutely continuous function with ‖ẋ(·)‖L∞(0,∞) <∞ and:

lim
T→∞

∫ T

0

β(x(s))ds <∞, ‖x(·)‖L∞(0,∞) <∞ . (4.5)

Then ‖x‖A → 0 as t→ ∞.

Proof: The proof can be found in Appendix A.

Theorem 4.1 (Convergence)
Assume that Assumption 4.1 holds. Given a partition π, a compact set A⊂R

n, and sets U ⊆R
m, X0,

X with A⊆X0 ⊆X ⊆ R
n. Assume that the input generator uSD is admissible and that there exist,
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with respect to the set A, positive definite functions β : X →R
+ and α : X →R

+ such that for all

ti∈π, x(ti) ∈ X0 and all τ ∈ [ti, ti+1)

α(x(ti + τ ; x(ti), uSD(·; x(ti), ti))) − α(x(ti)) ≤ −
∫ ti+τ

ti

β(x(s; x(ti), uSD(·; x(ti), ti)))ds (4.6)

and

α(x(ti+1) − α(x(ti)) ≤−
∫ ti+1

ti

β(x(s; x(ti), uSD(·; x(ti), ti)))ds (4.7)

holds. Then for all x(0)∈X0: 1.) The solution of (4.1) subject to (4.2) exists for all times. 2.) The

input and state constraints are satisfied. 3.) x(ti)∈X0 ∀ti ∈ π. 4.) ‖x(t)‖A → 0 as t→ ∞.

Proof: Since x(0) ∈ X0 the input uSD(·; x(0), 0, t1) is admissible, x(t1) ∈ X0, and x(τ ; x0,

uSD(·; x(0), 0)) exists over τ ∈ [0, t1] and satisfies the state constraints. Thus, since x(t1)∈X0 also
the input uSD(·; x(t1), t1, t2) at time t1 exists and is admissible. Repeatedly applying this argument
establishes part 1.)-3.)x of the theorem. The x trajectory resulting from the concatenation is abso-
lutely continuous since the sub-pieces are absolutely continuous. Furthermore, since uSD(·; x, ti)
∈ L∞([ti, ti+1],U)

‖ẋ(·)‖L∞(0,∞) <∞ and ‖x(·)‖L∞(0,∞)<∞. (4.8)

Note that 1.)-3.) (4.6) and (4.7) imply that

∀t ≥ 0 : α(x(t)) − α(x(0)) ≤ −
∫ t

0

β(x(s))ds (4.9)

where x(t) denotes the solution of (4.1) starting from x(0). Thus

0 ≤ α(x(t)) ≤ α(x(0)) −
∫ t

0

β(x(s))ds. (4.10)

Since α(x(0)) > 0, α positive definite with respect to A, and x(t) is bounded, we conclude that
t→

∫ t

0
β(x(s))ds is bounded, i.e.

lim
T→∞

∫ T

0

β(x(s)))ds <∞. (4.11)

Theorem 4.1 follows now directly from the application of Lemma 4.1.

Condition (4.6) and (4.7) can be seen as contraction requirements. Condition (4.6) implies the
decrease of the function α in between recalculation instants of the trajectory generator uSD,
whereas (4.7) enforces a decrease from recalculation instant to recalculation instant. Note how-
ever, that Condition (4.6) and (4.7) do not imply that the Lyapunov/decreasing function α itself is
continuous or strictly decreasing along solution trajectories (compare Figure 4.4). This is important,
since it allows to apply Theorem 4.1 to problems that do not admit a Lyapunov function which is
continuous in the state. Furthermore, allowing for discontinuity is advantageous in the case of NMPC,
for which it cannot be guaranteed a priory that the feedback and the value function is continuous,
especially if state constraints are present (Meadows et al., 1995; Fontes, 2000a; Fontes, 2003; Grimm
et al., 2003a; Grimm et al., 2003b; Findeisen et al., 2003e).
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Figure 4.4: Decreasing property of α.

Remark 4.2 (Relation to existing results) In comparison to the results in (Clarke et al., 1997; Marc-

hand and Alamir, 2000; Shim and Teel, 2003) we do not require that the input is kept constant in be-

tween recalculation instants. This allows to establish attractiveness of the set A without the necessity

to decrease the sampling/recalculation time to zero. Our results differ from the results of (Marchand

and Alamir, 1998) in that we do not assume an instantaneous feedback, whereas in comparison

to (Alamir and Bonard, 1999) we do not assume that the input trajectory generator can steer the

system in finite time to the origin.

Remark 4.3 (Stability in the sense of Lyapunov) The derived results only imply stability in the sense

of convergence to the set A. However, often stability in the sense of Lyapunov is of specific interest.

Considering a time invariant autonomous system

ẋ = f̃(x) (4.12)

stability in the sense of Lyapunov with respect to a set A is defined as:

Definition 4.4 (Stability with respect to a set (Yoshizawa, 1966))
A time invariant nonlinear system (4.12) is stable with respect to a set A, if for all ε > 0 there exists

a δ(ε) > 0, such that ‖x(t0)‖A < δ(ε) ⇒ ‖x(t)‖A < ε, ∀t ≥ t0.

The system is furthermore denoted as asymptotically stable with respect to the set A, if

Definition 4.5 (Asymptotic stability with respect to a set (Yoshizawa, 1966))
A time invariant nonlinear system (4.12) is asymptotically stable with respect to a set A, if for all

ε > 0 there exists a δ(ε) > 0, such that ‖x(t0)‖A < δ(ε) ⇒ ‖x(t)‖A < ε, ∀t ≥ t0 and ‖x(t)‖A → 0

as t→ ∞.

These stability conditions are, however, not directly applicable for systems under sampled-data open-

loop feedback, since the input applied in between the recalculation instants ti and ti+1 is given by the

system state at time x(ti):

ẋ(t) = f(x(t), uSD(t; x(ti), ti)), x(0) = x0. (4.13)
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Thus, the system possesses a “discrete” memory, x(ti) that must be taken into account, i.e. the

behavior of the system is not only defined by the current state (and possibly time) as assumed in

the standard notion of Lyapunov stability. Rigorously one must consider the stability of a hybrid

system (Michel, 1999; Grossman et al., 1993; Ye et al., 1998; Hou et al., 1997) consisting of the

“discrete” state x(ti), the continuous state x(t) and a generalized time consisting of the continuous

time t and the discrete time instants ti+1.

We do not give explicit conditions for achieving stability in the sense of Lyapunov. The main reason

for this is that it requires rather strong conditions on the “value” function α and on the decrease

function β.

We outline in Section 4.4 two sampled-data open-loop feedback approaches that satisfy the conditions
of Theorem 4.1.

4.3.1 Expansions and Generalizations

Various expansions of the derived results are possible. We shortly outline some of them:

Explicit dependence of the decrease function β on the input:
The integrand on the right hand side of (4.6) can also explicitly depend on the input uSD, i.e., it is
possible to utilize a positive function β̃(x, u) as integrand. However, to establish convergence, it must
be possible to bound β̃ from below via a function β(x), positive definite with respect to the set A.
This is utilized in the case of sampled-data open-loop NMPC.

Dynamic feedbacks:
Theorem 4.1 is not strictly limited to static input generators, i.e. to input generators that only depend
on x(ti). If, for example, the input generator uSD itself not only depends on x(ti) but also on an
internal state, i.e. u(t) = uSD(t; x(ti), xSD(ti), ti), where xSD is given by

ẋSD = fSD(x, xSD, uSD), (4.14)

the results of Theorem 4.1 can be applied if one considers the expanded state vector x̃ = [x, xSD]T

instead of x in Theorem 4.1. This is, for example of interest for outputfeedback considerations, see
Chapter 6. Further applications include the usage of exogenous disturbance models for tracking and
disturbance rejection following the ideas presented in (Isidori, 1995).

Finite time convergence to A:
Often it is of interest to achieve finite time convergence to a set B ⊃ A. Theorem 4.1 can be modified
to cover this case. However, for this we have to strengthen the assumptions on α slightly.
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Corollary 4.1 (Finite time convergence to a set B ⊃ A)
Assume that the assumptions of Theorem 4.1 hold. Furthermore, assume that α is finite for all x ∈ X
and that for the compact set B with A ⊂ B ⊆ X0 there exists a positive constant aB such that for all

x ∈ X /B
α(x) > aB. (4.15)

Then, additionally to the result of Theorem 4.1, there exists a recalculation time tconv ∈ π such that

‖x(t)‖ ∈ B for t ≥ tconv .

Proof: Since A is a strict subset of B, β(x) positive definite with respect to A and x absolutely
continuous, we know that there exists for all x(ti) 6∈ B a finite constant ∆α > 0, such that

α(x(ti+1)) − α(x(ti)) ≤ −
∫ ti+1

ti

β(x(s; x(ti), uSD(τ ; x(ti), ti)))ds ≤ −∆α. (4.16)

Thus, α is strictly decreasing from recalculation instant to recalculation instant, at least as long as
x(ti) 6∈ B. Furthermore, since α is strictly larger then 0 for all x ∈ X0/B, we know that there must
exist a recalculation instant tconv ∈ π such that α(x(tconv)) ≤ aB. Due to (4.15) this implies that
α(x(tconv)) ∈ B. Additionally, we know from (4.6) and (4.7) that the value of α(x(t)) for t ≥ tconv)

will be always less or equal to α(x(tconv)), thus x(t) ∈ B for all t ≥ tconv.

A variant of this result is utilized for obtaining inherent robustness and output-feedback results in
Chapter 5 and Chapter 6.

4.4 Suitable Sampled-data Feedbacks

The conditions for an application of Theorem 4.1 are, on a first view, rather stringent and difficult to
satisfy. Nevertheless, the results can be applied in a series of cases. Examples are the approaches
outlined in (Alamir and Bonard, 1999; Marchand and Alamir, 1998), sampled-data predictive control,
and for example open-loop input generators based on differential flatness. In the following we con-
sider the application of the result to two specific sampled-data open-loop feedbacks in more detail.
Firstly we consider the application of continuous instantaneous feedbacks to achieve sampled-data
control via open-loop forward simulation. Secondly in Section 4.4.2 we apply the derived result to
obtain stability conditions for sampled-data open-loop predictive control.

4.4.1 Instantaneous Feedbacks and Sampled-data Control

In the following we show that Theorem 4.1 allows to derive that any asymptotically stabilizing locally
Lipschitz continuous, instantaneous feedback can be used to obtain a stabilizing sampled-data open-
loop feedback.
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For simplicity of derivation we only consider the stabilization of the origin, i.e. A = {0} and
f(0, 0) = 0. We furthermore assume that f is locally Lipschitz and that no constraints on the states
and inputs are present, i.e. X = R

n and U = R
m.

Assume that a locally Lipschitz continuous state-feedback k : R
n → R

m is known that asymptotically
stabilizes the equilibrium of the closed-loop system

ẋ = f(x, k(x)) (4.17)

with a (non-zero) region of attraction R ⊆ R
n. Based on this state-feedback controller one can obtain

a stabilizing open-loop input trajectory generator by simple forward integration, i.e. uSD is given by

uSD(τ ; x(ti), ti) = k(x̄(τ)), τ ∈ [ti, ti+1), (4.18)

where x̄ is the solution trajectory of

˙̄x(τ) = f(x̄(τ), k(x̄(τ))) with x̄(ti) = x(ti). (4.19)

In other words the input signal applied open-loop in between [ti, ti+1) is simply given by a forward
simulation of the closed-loop system. Reasons for applying such an approach might be measurements
that are only available at the recalculation times. For the input uSD given by (4.18)- (4.19) it is
straightforward to derive the following result:

Theorem 4.2 (Nominal convergence by feedforward simulation of an instantaneous feedback)

Assume that f is locally Lipschitz continuous, that f(0, 0) = 0, that there are no constraints on

the state or inputs, and that there are no disturbances present. Then for any instantaneous locally

Lipschitz continuous state-feedback k : R
n → R

m that asymptotically stabilizes the equilibrium of

the closed-loop system ẋ = f(x, k(x)) with a region of attraction R that is applied in a sampled-data

open-loop fashion as defined in (4.18)- (4.19) π, with π̄ finite, for all x(0)∈R the solution of (4.1)
exists for all times and ‖x(t)‖ → 0 as t→ ∞.

Proof: We know that the origin of ˙̄x = f(x̄, k(x̄)) is asymptotically stable. Then, the converse
Lyapunov theorem given in (Kurzweil, 1956) assures the existence of a continuously differentiable
K-function α(x̄) and three K-functions γ1(x̄), γ2(x̄), and β(x̄) defined on the region of attraction R,
such that

γ1(x̄) ≤ α(x̄) ≤ γ2(x̄) (4.20)

∂α

∂x̄
f(x̄(τ), k(x̄(τ))) ≤ −β(x̄). (4.21)

Since we consider the nominal case we furthermore know that x and x̄ coincide starting from the
same x(ti) applying uSD (which is given in terms of x̄). Integrating (4.21) over [ti, ti+1) replacing
x̄ by x we see that condition (4.6) of Theorem 4.1 is satisfied. Furthermore, due to continuity of
the trajectories from t−i+1 to ti+1 we know that condition (4.7) holds. Thus, the conditions for the
application of Theorem (4.6) hold and one obtains the stated result.
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The theorem implies that any locally Lipschitz continuous asymptotically stabilizing instantaneous
feedback can be modified to achieve a nominally, in the sense of convergence stabilizing sampled-data
open-loop feedback. This provides a simple way for obtaining a sampled-data feedback controller by
forward simulation of the nominal closed-loop system equations.

Remark 4.4 (Nominal convergence) Note that the given result is mainly of theoretical value and does

not imply any stability or performance results for the disturbance case. The achievable performance

and stability in this case will be discussed in the next chapter.

Remark 4.5 (Varying recalculation times) Note that the derived result, in the nominal case, does

not require any conditions on the partition of the recalculation instants. In principle the partition can

be equidistant or varying, depending on the problem considered. This allows to apply this method to

problems, where state information might be available only rarely and at varying time instants. This

might for example be due to communication restrictions between the controller and sensors, as they

are typically present in industrial control implementations working with a central communication bus

that is used for multiple control loops. Furthermore, the measurement instants might vary, since they

must be performed by a human, such as a chemical analysis of a composition performed in an off-site

laboratory. With respect to the recalculation partition, however, note that the maximum recalculation

time is closely connected to a possibly tolerable external disturbance and/or model/plant uncertainty.

This is outlined in the robustness considerations of the next chapter and the output-feedback consid-

erations in Chapter 6.

4.4.2 Stability of Sampled-data NMPC

In the following we apply Theorem 4.1 to derive stability conditions for sampled-data open-loop
NMPC. The presented results are an expansion of the results presented in (Fontes, 2000b) in the
sense that the stabilization with respect to a closed target set A are considered, and that we require
less restrictive conditions to hold.

As in Section 2.5.1 the input applied in between the recalculation instants is given by the solution of
the following open-loop optimal control problem:

min
ū(·)∈L∞([0,Tp],U)

J(x̄(·), ū(·)) (4.22a)

subject to:

˙̄x(τ)=f(x̄(τ), ū(τ)), x̄(ti)=x(ti) (4.22b)

x̄(τ)∈X τ ∈ [ti, ti + Tp] (4.22c)

x̄(ti + Tp)∈E . (4.22d)

As in Chapter 2, the barred variables denote predicted variables. The cost functional J minimized
over the control horizon Tp ≥ π̄ > 0 is given by:

J(x̄(·), ū(·))=

∫ ti+Tp

ti

F (x̄(τ), ū(τ))dτ + E(x̄(ti + Tp)). (4.23)
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The stage cost F : X×U→R
+ is assumed to be positive definite with respect to the closed target set

A independent of u ∈ U , i.e.

Assumption 4.2 (Positive definiteness of the cost function with respect to the set A)

There exists a function β : X → R
+, positive definite with respect to the set A, such that

F (x, u) ≥ β(x), ∀x ∈ X , u ∈ U . (4.24)

As in Chapter 2 the terminal region constraint E ⊇ A and the terminal penalty term E : R
n → R

+

are used to enforce stability and to improve the performance of the closed-loop. We assume that E
and E satisfy the following assumptions:

Assumption 4.3 (Terminal region)

The terminal region E ⊆ X is closed with A ⊆ E and the terminal penalty term E(x) is continuous

and positive semi-definite with respect to the set A.

Assumption 4.4 (Existence of a local open-loop input uE(·))
For all x̃ ∈ E\A there exists an input signal uE(·; x̃) ∈ L∞([0, π̄],U), such that

x(τ ; x̃, uE(·; x̃)) ∈ E , ∀τ ∈ [0, π̄] (4.25)

and

E(x(τ ; x̃, uE(·; x̃))) − E(x̃) ≤ −
∫ τ

0

F (x(τ ; x̃, uE(·; x̃)), uE(s; x̃))ds, ∀τ ∈ [0, π̄]. (4.26)

Loosely speaking, similarly to the case of convergence to the origin as presented in Section 2.5.1, E
can be seen as a F -conform local control Lyapunov function for the terminal set E . Suitable terminal
penalty terms and terminal regions can be determined similarly to the results presented in (Michalska
and Mayne, 1993; Chen and Allgöwer, 1998b; Chen and Allgöwer, 1998a; Chen et al., 2000; Magni
and Scattolini, 2002; Fontes, 2000b; Fontes, 2003) for the case of convergence to the origin.

The main difference to the existing results that achieve convergence to the origin lies in the fact that
one can utilize local controllers that only achieve stabilization with respect to the set A for calculating
E and E. This expands the applicability of the results significantly, e.g. in the case that only set
stabilization is required or can be achieved, as in the output-feedback case (see Chapter 6).

The optimal input resulting from the solution of (4.22) (assuming that it exists, see remark later),
is denoted by ū?(·; x(ti)). It defines the open-loop input that is applied to the system until the next
sampling instant ti+1:

uSD(t; x(ti), ti)= ū?(t; x(ti)), t∈ [ti, ti+1) , (4.27)

i.e. in accordance with Definition 4.1, the admissible input generator is defined via the solution of the
optimal control problem (4.22).

We refer in the following to an admissible set of problem (4.22) as:
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Definition 4.6 (Admissible state set X)

A set X ⊆ X is called admissible, if for all x0 ∈ X there exists an admissible input u(·) ∈
L∞([0, Tp],U) such that

1. x(τ ; x0, ũ(·)) ∈ X, τ ∈ [0, Tp]

2. x(Tp; x0, ũ(·)) ∈ E .

Note that the admissibility of a set X ⊆ X does not imply that a solution to the optimal control
problem (4.22) exists for all x ∈ X . Specifically, it could be that the minima of problem (4.22) is
not attained. While the existence of an admissible input is related to constrained controllability, the
question about the existence of an optimal solution of (4.22) is in general non-trivial to answer. Thus,
we consider in the following a maximum admissible set, such that (4.22) has a solution:

Definition 4.7 (Set R)

The set R denotes the maximum admissible set, such that (4.22) admits for all x0 ∈ R an optimal

(not necessarily unique) solution.

Note that in general it is rather difficult to explicitly calculate the maximum admissible set (Rossiter
et al., 1995; Mayne et al., 2000). The main reason for considering the set R is the requirement that
an optimal/feasible solution at one sampling instant should guarantee the existence of a feasible and
optimal solution at the next sampling instant.

Remark 4.6 (Existence of solutions) It is possible to derive strict existence results for (4.22) imposing

certain convexity and compactness conditions, see for example (Fontes, 2003; Fontes, 2000b; Michal-

ska and Vinter, 1994) and (Berkovitz, 1974; Fleming and Rishel, 1982; Vinter, 2000). However, often

it is not possible to check these conditions a priori. Furthermore, these conditions are often rather

restrictive with respect to the allowed system class and cost functional.

Under the assumptions made, the following theorem states sufficient conditions guaranteeing stability
of the closed-loop in the sense of convergence to the set A:

Theorem 4.3 (Convergence of sampled-data NMPC)
Suppose that Assumptions 4.1-4.4 hold. Then for the closed-loop system defined by (4.1), (4.2)
and (4.27) ‖x(t)‖A→0 as t→ ∞ ∀x(0) ∈ R.

Proof: As usual in predictive control the proof consists of two parts: The first part establishes that
initial feasibility implies feasibility afterwards. Based on this result it is then shown that the state con-
verges to the set A considering the value function of (4.22) as a decreasing/Lyapunov like function.
Feasibility:

Consider any recalculation instant ti for which a solution exists (e.g. t0). In between ti and ti+1 the op-
timal input ū?(τ ; x(ti)) is implemented. Since no model-plant mismatch nor disturbances are present,
x(ti+1)= x̄(ti+1; x(ti), ū

?(τ ; x(ti))). Thus, the remaining piece of the optimal input ū?(τ ; x(ti)), τ ∈
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[ti+1, ti + Tp] satisfies the state and input constraints. Furthermore, x̄(ti+Tp; x(ti), ū
?(τ ; x(ti)))∈E .

Thus, it follows from Assumption 4.4 that there exists at least one input uE(·; x) that renders E invari-
ant for the predicted state x̄ over [ti +Tp, ti +Tp + π̄]. Picking any such input we obtain as admissible
input for ti + σ, σ ∈ (0, ti+1 − ti]

ũ(τ ; x(ti + σ)) =

{

ū?(τ ; x(ti)), τ ∈ [ti + σ, ti+Tp]

uE(τ − ti − Tp), τ ∈(ti + Tp, ti+Tp + σ]
. (4.28)

Specifically, we have for the next recalculation instant (σ = ti+1−ti) that ũ(·; x(ti+1)) is an admissible
input, hence admissibility at time ti implies admissibility at ti+1. Thus, if (4.22) is feasible for t = 0,
it is feasible for all t ≥ 0.

Convergence:

We first show that the value function is decreasing starting from a sampling instant. Remember that
the value of the value function V for x(ti) is given by:

V (x(ti)) =

∫ ti+Tp

ti

F (x̄(τ ; x(ti), ū
?(·; x(ti))), ū?(τ ; x(ti)))dτ +E(x̄(ti + Tp; x(ti), ū

?(·; x(ti)))),

(4.29)

and the cost resulting from (4.28) starting from any x(ti + σ; x(ti), ū
?(·; x(ti))), σ ∈ (0, ti+1− ti],

using the input ũ(τ, x(ti + σ)), is given by:

J(x(ti + σ), ũ(·; x(ti + σ)))=

∫ ti+σ+Tp

ti+σ

F (x̄(τ ; x(ti + σ), ũ(·; x(ti + σ))), ũ(τ ; x(ti + σ)))dτ

+E(x̄(ti + σ+Tp; x(ti + σ), ũ(·; x(ti + σ)))). (4.30)

Reformulation yields

J(x(ti + σ), ũ(·; x(ti + σ)))=V (x(ti))

−
∫ ti+σ

ti

F (x̄(τ ; x(ti), ū
?(·; x(ti))), ¸ū?(τ ; x(ti)))dτ−E(x̄(ti+Tp; x(ti), ū

?(·; x(ti))))

+

∫ ti+σ+Tp

ti+Tp

F (x̄(τ ; x(ti + σ), ũ(·; x(ti + σ))), ũ(τ ; x(ti + σ)))dτ

+E(x̄(ti + σ+Tp; x(ti + σ), ũ(·, x(ti + σ)))). (4.31)

Integrating inequality (4.26) from ti+σ to ti+σ+Tp starting from x(ti +σ) we obtain zero as an upper
bound for the last three terms on the right side. Thus,

J(x(ti + σ), ũ(·, x(ti + σ)))−V (x(ti))≤−
∫ ti+σ

ti

F (x̄(τ ; x(ti), ū
?(·; x(ti))), ū?(τ ; x(ti)))dτ. (4.32)

Since ũ is only a feasible but not necessarily the optimal input for x(ti + σ) and since x0 ∈ R, it
follows that

V (x(ti + σ))−V (x(ti))≤−
∫ ti+σ

ti

F (x̄(τ ; x(ti), ū
?(·; x(ti))), ū?(τ ; x(ti)))dτ. (4.33)
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Furthermore, since no model-plant mismatch or disturbances are present, we can replace the predicted
state x̄ and ū? on the right side by the real system state x and uSD:

V (x(ti + σ))−V (x(ti))≤−
∫ ti+σ

ti

β(x(τ ; x(ti), uSD(τ ; x(ti), ti)))dτ, (4.34)

where β is the positive definite function bounding F from below, compare Assumption 4.2. Thus, the
value function is decreasing along solution trajectories starting at a sampling instant ti. Especially we
have

V (x(ti+1))−V (x(ti))≤−
∫ ti+1

ti

β(x(τ ; x(ti), uSD(τ ; x(ti), ti)))dτ. (4.35)

Note that the value function V and the integrand of the right hand side of (4.35) satisfies all required
conditions on α and β of Theorem 4.1 considering the set R as setX0. Thus we obtain that ‖x(t)‖A →
0 for t→ ∞ ∀x(0) ∈ X0.

Remark 4.7 (Consideration of a limited class of input signals/quantized control) The derived result

can easily be expanded to allow the consideration of limited classes of input signals instead of a

measurable, “constraint satisfying” input signals. Examples are the consideration of inputs that

are piecewise continuous in between sampling instants, that are piecewise constant in between the

sampling instants, or that are parameterized as splines or polynomials as a function of time. The

consideration of such inputs can be of interest, if only piecewise constant inputs can be implemented

on the real system due to slow D/A converters or if a direct solution approach for the solution of the

optimal control problem (4.22), as outlined in Section 3.2.1, is employed. With respect to the derived

convergence/stability result, only minor modifications are necessary. Specifically, one only has to limit

the allowed input signals in Definition 4.6 for the admissible set, and one has to limit the considered

inputs in the optimal control problem (4.22) itself. Considering such modifications, the results of

Theorem 4.3 remain unchanged and no modifications in the proof are necessary. Basically it is even

possible to consider only a finite number of discrete values for the input (often referred to as quantized

control or hybrid control). Note, that even though NMPC allows in principle to consider restricted

classes of input signals, finding a suitable terminal penalty term and terminal region constraint can

be rather difficult.

Remark 4.8 It is possible to replace the minimization in (4.22) by a decreasing condition on the

value function. Basically it is necessary to achieve a positive decrease in the value function, i.e. fea-

sibility implies stability assuming that certain conditions hold (Chen and Allgöwer, 1998b; Scokaert

et al., 1999; Findeisen, 1997; Findeisen and Rawlings, 1997). Results on the stability under sub-

optimal solutions can for example be found in (Scokaert et al., 1999; Findeisen, 1997; Findeisen

and Rawlings, 1997; Magni et al., 2003) for discrete time NMPC, in (Chen and Allgöwer, 1998b;

Fontes, 2000b; de Oliveira Kothare and Morari, 2000) for sampled-data NMPC, and in (Michalska

and Mayne, 1993) for instantaneous NMPC.

In the next section we apply the outlined sampled-data open-loop feedback strategies to a small ex-
ample problem, underlining the advantage of a sampled-data open-loop feedback implementation in
comparison to sample-and hold implementations.
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4.4.3 Control of a CSTR

In this section we study the performance and properties of the presented sampled-data open-loop feed-
back controllers in comparison to instantaneous feedbacks. For this purpose we consider the control
of a continuous stirred tank reactor (CSTR) for an exothermic, irreversible reaction, A → B. The
considered model under the assumption of constant liquid volume takes the following form (Henson
and Seborg, 1997; Seborg et al., 1999):

ċA =
q

V
(cAf − cA) − k0e

−E
RT cA (4.36)

Ṫ =
q

V
(Tf − T )+

−∆H

ρCp
k0e

−E
RT cA+

UA

V ρCp
(Tc − T ). (4.37)

The parameters UA, q, V , cAf , E/R, ρ, k0, −∆H , Cp can be found in Table 4.1. The concentration

Table 4.1: Parameters of the CSTR model.

Parameter Value Parameter Value

q 100 L/min CAf 1 mol/L

Tf 350 K V 100 L

ρ 1000 g/L Cp 0.239 J/g·K
−∆H 5 · 104 J/mol E

R
8750 K

k0 7.2 · 1010 min−1 UA 5 · 104 J/min·K

of substance A is denoted by cA, T is the reactor temperature, and Tc is the manipulated variable
– the coolant stream temperature. The objective is to stabilize the operating point Ts = 375K,
cAs = 0.159mol/L via the coolant stream temperature Tc (Tcs = 302.84K), while the coolant stream
temperature Tc is limited to values between

Tc ∈ [270K, 330K]. (4.38)

We assume that the state information is only available all 0.15min. This also defines the recalcula-
tion instants considered for sampled-data open-loop feedback, i.e. we consider that the recalculation
instants are equally apart:

ti = iδr, where δr = 0.15min. (4.39)

With respect to the manipulated input, the coolant stream temperature, we assume that possibly
present D/A converters or other sample-and-hold elements are sufficiently fast and can be neglected.

As outlined in (Henson and Seborg, 1997), the reactor shows significant nonlinearities and vary-
ing time constants, see Figure 4.5. The variability of the process dynamics, especially of the time
constants, can lead to significant performance decreases or even instability if a sampled-data imple-
mentation with a constant input in between the recalculation instants is employed. This is one of the
issues examined in the following.
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Figure 4.5: Temperature trajectories for ±2K changes in the coolant stream temperature.

Sampled-data open-loop feedback based on a I/O linearizing controller
We apply the feedforward simulation technique outlined in Section 4.4.1 to achieve sampled-data
open-loop feedback. The sampled-data open-loop feedback is based on a classical input-output (I/O)
linearizing state-feedback controller (Isidori, 1995), neglecting the constraints (4.38) on the manipu-
lated input Tc. Considering as output the reactor temperature T , i.e.

y(t) = T (t), (4.40)

one trivially sees that the system has relative degree one, and that the zero dynamics is globally
exponentially stable. Simply clipping the input once the input constraints (4.38) are violated leads to
the following controller:

Tc =







330K if Tc,iolin(T, cA) > 330K

Tc,iolin(T, cA)

240K if Tc,iolin(T, cA) < 270K

. (4.41)

Here Tc,iolin(T, cA) is the I/O linearizing controller given by:

Tc,iolin(T, cA) = T − V ρCp

UA

(
q

V
(Tf − T ) +

−∆H

ρCp
k0e

−E
RT CA + λiolin(T − Ts)

)

, (4.42)

where Tcs, cAs, and Tcs are the steady state values of the considered operating point, and where −λiolin

defines the closed-loop eigenvalue of the linearized dynamics. In the following λiolin = 3 is used.

This controller stabilizes the system with a rather large region of attraction and satisfies the conditions
on the instantaneous feedback of Section 4.4.1. Figure 4.6 shows the performance of the controller for
different implementations: for a sampled-data open-loop implementation via feedforward simulation
as proposed in Section 4.4.1, a sampled-data implementation considering that the input at the recal-
culation time ti is kept constant until the next recalculation time (sampled-and-hold element with a
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sampling time of δS = δr present), and, for comparison, the instantaneous implementation of (4.42).
All simulations where performed for the initial conditions cA(0) = 0.5mol/L and T (0) = 350K. The
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Figure 4.6: States and manipulated input using an instantaneous, a sampled-data open-loop feedback, and a

sample-and-hold implementation of an I/O linearizing controller.

sampled-data open-loop feedback is performed via a forward simulation of the closed-loop system in
parallel to the real system, compare equation (4.19).

As expected, in the absence of disturbances and model-plant mismatch, the instantaneous and
sampled-data open-loop feedback achieve the same performance, which is superior to the perfor-
mance of the controller considering a sample-and-hold element. To also achieve a good performance
with the sample-and-hold element present, one would have to decrease the recalculation time signif-
icantly. The presented results make immediately clear, why the consideration of an open-loop input
trajectory (or approximations hereof) is advantageous in comparison to an implementation using a
sample-and-hold element.

However, the performance of the sampled-data open-loop feedback will in general decrease signif-
icantly in the presence of disturbances and model-plant mismatch, as will be outlined in the next
chapter. One reason for this is that updated state information is only fed back at the recalculation
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instants, i.e. no immediate reaction of the controller in between the recalculation to disturbances is
possible.

Sampled-data open-loop NMPC
In the following we apply the stabilizing sampled-data open-loop NMPC strategy as outlined in Sec-
tion 4.4.2 to the CSTR example process. The considered stage cost function F is quadratic and takes
the form:

F =

[

cA − cAs

T − Ts

]T [

40 0

0 0.4

][

cA − cAs

T − Ts

]

+ (Tc − Tcs)
2. (4.43)

A suitable terminal penalty term E, and a terminal region E satisfying Assumption 4.4 are deter-
mined on the basis of a locally stabilizing linear control law following the semi-infinite optimization
approach as outlined in (Chen and Allgöwer, 1998b). For this purpose the system is linearized around
the considered steady state and a linear LQR controller is designed, considering the stage cost (4.43).
For the considered steady state we obtain the following linear feedback law

Tc =

[

352.8246

4.3889

]T

︸ ︷︷ ︸

K

[

cA − cAs

T − Ts

]

+ Tcs (4.44)

The terminal penalty term E and the terminal region E are determined according to (Chen and All-
göwer, 1998b) based on this linear control law, such that the terminal region E is maximized in size
subject to the conditions, that E is invariant for the nonlinear system under the local controller, that the
linear feedback (4.44) satisfies the input constraints, and that Assumption 4.4 is satisfied, replacing
uE by the linear feedback law. The necessary semi-infinite optimization to obtain a maximum region
E was performed in Matlab, leading to the quadratic terminal penalty

E

([

cA − cAs

T − Ts

])

=

[

cA − cAs

T − Ts

]T [

19789.05 168.34

168.34 0.21

]

︸ ︷︷ ︸

EL

[

cA − cAs

T − Ts

]

. (4.45)

The terminal region E is given by

E =







[

cA
T

]

∈ R
2

∣
∣
∣
∣
∣
∣

[

cA − cAs

T − Ts

]T

EL

[

cA − cAs

T − Ts

]

≤ αEL






. (4.46)

For the simulations the resulting optimal control problem (4.22) that must be solved at all recalcu-
lation instants was solved by a direct solution approach. For this purpose the input was discretized
as piecewise constant, with a discretization time δu = 0.01min. The prediction horizon was set for
all simulations to Tp = 1.5min, which leads to a rather large region of attraction of the closed-loop.
For the simulations it was assumed that the numerical solution of the optimal control problem can be
performed instantaneously, i.e. computational delays were neglected. Figure 4.7 and 4.8 show the
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Figure 4.7: Reactor temperature and concentration of the substance A in the reactor for instantaneous, sample-

and-hold, and sampled-data open-loop feedback implementations. For the sampled-data and sampled-data

open-loop feedback implementation the recalculation time is fixed to δr = 0.15min.

states and inputs of the resulting closed-loop in comparison to an instantaneous NMPC implemen-
tation, and two NMPC implementations where the applied input was kept constant in between the
recalculation instants (sample-and-hold element present). The simulations where performed for the
initial conditions cA(0) = 0.5mol/L and T (0) = 350K.

For the instantaneous NMPC implementation, the open-loop optimal control problem was solved at
all function calls of the numerical integration algorithm. For the sampled-data open-loop feedback
implementation the optimal control problem was solved at all recalculation instants, i.e. all 0.15min
and the resulting input was applied open-loop until the next recalculation instant. Even so that a
small discretization of the input due to the direct solution approach of the optimal control problem
is present, as expected the instantaneous and sampled-data open-loop NMPC implementation show
similar performance. In comparison, the sample-and-hold implementations, e.g. fixing the input in
between recalculation instants, leads to a significant performance loss. If the sample-and-hold element
is not considered in the optimal control problem, e.g. if the input discretization is not adjusted to the
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Figure 4.8: Manipulated variable coolant temperature Tc for instantaneous, sample-and-hold, and sampled-data

open-loop feedback implementations.

recalculation time δr, the performance decreases even further. This can be seen from the dotted curve,
which corresponds to a sample-and-hold implementation with δS = 0.15min, while the input for the
direct solution method is discretized with δu = 0.01min.

As for the input-output linearization based sampled-data open-loop feedback implementation, the
results underpin some of the advantages that result from an application of an open-loop input in
between sampling instants.

4.5 Consideration of Delays

So far, a rather ideal setup was considered. In this section we consider the problem of computational
and measurement delays present in the closed-loop. As it will be shown, a sampled-data open-loop
feedback allows in a straightforward way to consider such measurement and computational delays by
feedforward prediction.
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Measurement and computational delays might be present for several reasons; we only mention a few
examples here:

• The state information might be delayed, if a computationally involved state estimator, like
moving horizon state estimation, is used.

• The state information might be delayed due to off-site measurement of a chemical composition,
slow sensors, or a detailed laboratory analysis of a drawn sample.

• The state estimate might be based on computationally intense digital signal processing such as
digital image processing. One example might be vision based tracking information of moving
objects.

• Possibly present communication delays due to the use of a process control bus for communica-
tion between the sensors and the process control system.

• The real-time scheduling present in modern process control systems might lead to a delayed
calculation of the sampled-data open-loop feedback due to processes with a higher priority,
such as safety related operations.

• The calculation of the sampled-data open-loop feedback itself might be computationally intense
and lead to computational delays:

– One specific example is the often computationally intense solution of the optimal control
problem in sampled-data open-loop NMPC. Even so improvements in dynamic optimiza-
tion have led to efficient numerical solution methods for the open-loop optimal control
problem, see Chapter 3, for fast or large scale systems the required solution time is often
non negligible.

– Another example might be the calculation of the open-loop feedback based on the feed-
forward simulation of the closed-loop, which also requires a certain, sometimes non-
negligible computation time.

In principle it is possible to neglect sufficiently small delays and consider them as small, unknown
disturbances. As shown in Chapter 5 sampled-data open-loop feedbacks can reject small disturbances,
provided that certain continuity assumptions hold. However, in general it is difficult to estimate the
degree of robustness a priory and it might be even possible that the closed-loop does not possess any
inherent robustness. Thus, known delays should be always considered by the control, because oth-
erwise the performance might degrade significantly or even instability of the closed-loop can occur.
As motivating example consider the CSTR process, as presented Section 4.4.3. Figure 4.10 shows
simulation results for the CSTR reactor, neglecting a computational delay, which is assumed to be
equal to the recalculation time of 0.15min. As can be seen from the corresponding uncorrected im-
plementation (dashed-doted line), the performance degrades significantly and the delay even leads to
instability.
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In the following we outline how one can take computational and measurement delays straightfor-
wardly into account, leading to closed-loop stability and a certain degree of recovery of performance.
Basically, measurement and computational delays have the same influence on the closed-loop, namely
that the obtained input trajectory does not fit anymore to the currently present state. The consideration
of the delay is simply based on a sufficiently long feedforward prediction.

4.5.1 Measurement Delays

For simplicity assume that the measurement delay is constant2. We denote the delay by δc and assume
that δc ≤ π. Mathematically, a measurement delay can be represented by the fact that at the recal-
culation time ti not the true system state x(ti) is available for feedback, rather only the state at time
ti − δc, i.e. x(ti − δc), is available. Thus, obtaining a consistent initial guess for the sampled-data
open-loop feedback calculation is rather simple. It is only necessary to feedforward simulate the sys-
tem from x(ti − δc) using the known open-loop input signal uSD(·; x(ti−1), ti−1), i.e. x(ti) is given
by x(ti) = x̂(ti), where x̂(ti) is given by the solution of:

˙̂x(τ) = f(x̂(τ), uSD(τ ; x(ti−1), ti−1)), x̂(ti − δc) = x(ti − δc), τ ∈ [ti − δc, ti]. (4.47)

Note that the derived stability results are also valid for the case of measurement delays that are consid-
ered as proposed. This is immediately clear, since x̂(ti) = x(ti). The simulation based consideration
of measurement delay thus provides a simple mean to counteract measurement delays that are present
in all practical applications.

4.5.2 Computational Delays

For the case of computational delays we assume that at least an upper bound on the computational
delay of the form δ̄c ≤ π is known. Thus, in the worst case the open-loop feedback trajectory for the
recalculation time ti is only present at time ti + δ̄c. We simply propose to overcome this problem by
shifting the applied input by the maximum measurement delay. The sampled-data open-loop input is
actually calculated for the predicted state at time ti + δ̄c and is applied to the system over the interval
[ti + δ̄c, ti+1 + δ̄c]. To achieve this, similarly to the measurement delay case, the state at time x(ti) is
feedforward predicted using the system model to obtain an estimate for the state at time x(ti + δ̄x).
The input applied to the system is thus actually given by:

u(t) = uSD(t; x̂(ti + δ̄c), ti + δ̄c) (4.48)

where ti is the previous closest recalculation instant to the time t, and where x̂(ti + δ̄c) is given by:

x̂(τ) = f(x̂(τ), uSD(τ ; x(ti−1 + δ̄c), ti−1 + δ̄c)), x̂(ti) = x(ti), τ ∈ [ti, ti + δ̄c]. (4.49)

This strategy is depicted in Figure 4.9. Similarly to the measurement delay case it is clear that the

2Note that the delay can also vary in length, as long as it is known and not longer than π
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Figure 4.9: Ideal/instantaneous feedback (left), computational delay present (middle), and delay considered

(right).

derived stability results do also hold in the delayed case if the delay is considered as proposed. In the
proof of Theorem 4.1, for example, one only has to consider a shifted problem starting at time ti + δc,
keeping in mind that in the nominal case x̂(ti + δc) = x(ti + δx).

The presented approach is a generalization of the results for sampled-data NMPC as presented
in (Chen et al., 2000) and (Findeisen and Allgöwer, 2004a) to the sampled-data feedback case.

The derived methods provide simple means for the consideration of measurement and computation
delays without loss of stability and a certain degree of recovery of performance in the nominal case.
Computational and implementation wise, the approaches only require an additional feedforward sim-
ulation of the measured system state using the nominal system model. In the next section we outline
the application of the outlined approach to the CSTR example process.

4.5.3 Simulation Example

In this section we apply the outlined computational delay consideration technique to the CSTR ex-
ample under sampled-data open-loop NMPC. As before we assume that the recalculation instants are
equally apart, i.e. ti = iδr, with δr = 0.15min, and that the maximum required solution time δ̄c

coincides with the recalculation time , i.e. δ̄c = δr. The prediction horizon is set to Tp = 1.5min,
and the optimal control problem (4.22) is solved via a direct solution method in Matlab, where the
input is parameterized as before as piecewise constant with a discretization time of δu = 0.01min.
This corresponds to a total number of 150 decisions in the resulting optimization problem, solv-
ing the underlying differential equations. As before we want to stabilize the steady-state Ts = 375K,
cAs = 0.159mol/L. Figure 4.10 shows the simulation result for the initial condition cA(0) = 0.5mol/L

and T (0) = 350K for different NMPC controller implementations. The solid line shows the behav-
ior in the ideal case, i.e. assuming that no computational delay is present and that the open-loop
input can be instantaneously obtained from the state information x(ti) at the recalculation instants ti.
The dashed-dotted line shows the significantly degraded performance resulting from the sampled-data
open-loop input signal implemented with a 0.15min delay. Note that even if the computational delay
is reduced to significantly smaller values in the order of 0.03min, instability in form of a yet smaller,
but still existing oscillation occurs. The oscillations are even more visible in the manipulated variable,
the coolant stream temperature Tc, which for the delay of 0.15min oscillates close to the minimum
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Figure 4.10: Resulting states considering an ideal NMPC controller, an NMPC controller that does neglect the

delay, and an NMPC controller that accounts for the delay.

and maximum allowed input values. The dashed line shows the simulation results applying the out-
lined method. As one would expect, the performance decreases, mainly due to the first control move,
which is fixed to the expected steady-state value since no admissible solution of the optimal control
problem is yet available. Overall, the performance is satisfying, especially the desired steady-state is
nicely reached and no oscillations, neither in the controlled, nor in the manipulated variables are vis-
ible. Summarizing, the example clearly underpins the necessity to explicitly account computational
and measurement delays. The derived approaches, which are rather simple to implement, allow to
account for the delays without loss stability in the nominal undisturbed case.

4.6 Summary and Discussion

In this chapter consider the question of stabilization using sampled-data open-loop feedback. After
a short review on the difference between sampled-data open-loop feedback and feedback implemen-
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tations based on sample-and-hold, we derived new stability conditions for sampled-data open-loop
state-feedback. These results for example allow to consider controls that are discontinuous in the
state. This is of special interest for predictive control, since it often cannot be guaranteed a priori that
the feedback resulting from the solution of the corresponding optimal control problem is continuous
in the state.

While the derived conditions seem to be, on a first view, rather restrictive, we outlined the usefulness
of these considering two specific sampled-data control controllers: the implementation of sampled-
data open-loop feedbacks based on the feedforward simulation of a continuous instantaneous state-
feedback, and sampled-data open-loop feedback based on a rather general NMPC setup. The open-
loop sampled-data feedback strategies where exemplified considering the control of a simple CSTR.
Even so that the considered example is rather simple it clearly underpins the advantages of sampled-
data open-loop feedback in comparison to an implementation via sample-and-hold. In the nominal
case, i.e. in the absence of external disturbances and model-plant mismatch, it is even possible to
recover the performance of an instantaneous feedback.

Even so that sampled-data open-loop feedback allows coping with rarely available state measurements
and varying recalculation times, it is, as exemplified in the CSTR example, inherently sensible with
respect to delays. To overcome this sensitivity we proposed two techniques for delay consideration
using feedforward simulation. While in the case of measurement delays it is necessary that the delay
is exactly known, which is often the case, for computational delays it is only necessary to know a
maximum upper bound. The outlined techniques allow a simple, easily implementable technique to
account for such delays.

However, it is important to note that the derived results are all based on the consideration of an ideal-
ized, nominal setup. Especially, it is assumed that neither model-plant mismatch, nor external distur-
bances are present. This condition is certainly not valid for practical applications and thus makes the
examination of the influence of external disturbances and model-plant mismatch on the performance
and stability indispensable. The following chapter considers this question from an analysis point of
view. Specifically it is analyzed, under which conditions sampled-data open-loop feedbacks possess
inherent robustness properties, at least with respect to small disturbances.
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Chapter 5

Inherent Robustness Properties of
Sampled-data Open-loop Feedbacks

The previous chapter focused on nominal stability results for sampled-data open-loop feedback, in-
cluding sampled-data open-loop NMPC. In reality, however, model-plant mismatch, exogenous dis-
turbances, unknown delays, numerical errors, and state estimation errors are present. Analyzing the
influence of such unknown disturbances is especially important in the case of sampled-data open-loop
feedback, since the state information is only fed back at the recalculation times, i.e. the controller can-
not immediately react to disturbances. Is it still possible to achieve stability and good performance, at
least in the case of small disturbances? Also, what type of performance and stability can be expected,
if the disturbances are persistent? In this chapter we try to provide some answers to these questions.

We do not consider the design of robustly stabilizing controllers. Rather we analyze the inherent
robustness properties of sampled-data open-loop feedback. Especially, we show that sampled-data
open-loop feedback possesses inherent robustness properties if the decreasing function is locally Lip-
schitz. The results are of practical interest as they underpin that small disturbances, for example due
to model-plant mismatch or numerical errors, can be tolerated.

The derived results are related to robustness results for discrete time systems (Scokaert et al., 1997)
as well as to results on sampled-data feedback considering sample-and-hold elements for the in-
put (Kellett and Teel, 2002; Kellett et al., 2002; Kellett, 2002; Clarke et al., 2000; Clarke et al., 1997).

We begin in Section 5.1 with a short motivation, considering the CSTR example of Section 4.4.3.
Section 5.2 states the considered setup and Section 5.3 outlines the considered stability notation. In
Section 5.4 robustness results with respect to additive disturbances are presented. Section 5.5 presents
results with respect to input disturbances, such as numerical errors and neglected delays. The question
of robustness with respect to measurement disturbances and state estimation errors is considered in
Section 5.6. Figure 5.1 shows a sketch of the considered type of disturbances.

The results derived are based on results for sampled-data open-loop NMPC as presented in (Findeisen
et al., 2003e; Findeisen et al., 2003d; Findeisen et al., 2003c; Findeisen et al., 2003b).



5.1 Motivation 73
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Figure 5.1: Considered robustness setup. The variable p represents an additive model-plant mismatch.

5.1 Motivation

We consider the CSTR example of Section 4.4.3. However, now we assume that a model-plant mis-
match is present, i.e. in the real system the cooling temperature is disturbed by a “multiplicative”
uncertainty:

ċAr =
q

V
(cAf − cAr) − k0e

−E
RTr cAr (5.1)

Ṫr =
q

V
(Tf − Tr)+

−∆H

ρCp

k0e
−E
RTr cAr+

UA

V ρCp

(γmultdist(Tc − Tcs) + Tcs − Tr). (5.2)

To distinguish the real system from the model (4.36), we use Tr and cAr for the real temperature and
concentration. The model-plant mismatch stems from the multiplicative term γmultdist. As can be
seen, for γmultdist = 1 the real plant and the model (4.36) coincide.

Figure 5.2, and Figure 5.3 show simulation results for instantaneous and sampled-data open-loop
feedback implementations of NMPC and the I/O linearizing controller outlined in Section 4.4.3 for
different values of γmultdist. All shown simulations start at t = 0 from the same initial condition
cA(0) = 0.5mol/L and T (0) = 350K. The parameters for the I/O linearizing controller and the
NMPC controller are the same as in Section 4.4.3. For the sampled-data implementations the recalcu-
lation time is fixed to δr = 0.15min. For the simulation of the I/O linearizing controller, as shown in
Figure 5.2, λiolin is set to 3. The left plots in Figure 5.2 show the behavior of an instantaneously im-
plemented I/O linearizing controller for γmultdist values of 1.0 (nominal case), 2, 3, 4, 5 and 6. As can
be seen from the plot of the reactor temperature (top figure) and the coolant temperature Tc (bottom
figure), the controller is able to stabilize the CSTR for all values of γmultdist and achieve nice overall
performance. However, this changes for a sampled-data open-loop implementation of the controller,
as shown in the right plots of Figure 5.2. Since the mismatch between the model and the plant is only
“detected” at the recalculation instants, the performance even degrades for small values of γmultdist.
Note that for the sampled-data open-loop controller only the results for γmultdist values between 1.0

and 2.0 are shown. For a value of γmultdist = 1.8 strong oscillations occur. Furthermore, due to the
model-plant mismatch, the controller is not able to bring the reactor temperature to the corresponding
set-point value. Rather the controller is only able to drive the system into a small band around the
set-point.

The plots for the NMPC implementations, see Figure 5.3 show similar behavior. The optimal control
problem is, as in Section 4.4.3, solved in Matlab, considering for the instantaneous and sampled-data
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Figure 5.2: Instantaneous I/O linearizing controller (left) and sampled-data open-loop I/O linearizing controller

(right) for a recalculation time of δr = 0.15min.

implementation an input discretization off δu = 0.01min, which is a sufficiently fine input parame-
terization. The main difference to the I/O linearizing controller is that in the sampled-data case the
drastic change in the input signal at the recalculation times is even more visible, leading to a further
decreased performance. This can be explained by the fact that the NMPC controller predicts over a
rather long horizon into the future, using the incorrect model of the system. Summarizing, the in-
stantaneous controllers are able to nicely counteract the unknown model uncertainty and stabilizes
the system. For the sampled-data controllers, however, the performance decreases dramatically with
increasing values of γmultdist. Nevertheless, both sampled-data controllers are able to stabilizes the
system in a practical sense, e.g. keep the input and the state bounded.

Motivated by the simulations we consider in the following the question, under which conditions
sampled-data open-loop feedback controllers, specifically sampled-data open-loop NMPC, possess
inherent robustness with respect to disturbances? Furthermore, what kind of stability can be achieved,
if the disturbance is not vanishing over time?
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Figure 5.3: Instantaneous NMPC (left) and open-loop sampled-data NMPC (right) for a recalculation time of

δr = 0.15min.

5.2 Setup

We consider that the nominal system is given by

ẋ(t) = f(x(t), u(t)), t ≥ 0, x(0) = x0, (5.3)

where x(t)∈R
n denotes the system state, and u(t)∈R

m denotes the input. With respect to the vector
field f we assume that:

Assumption 5.1
The vector field f :X×U→R

n is continuous in u and locally Lipschitz in x. Furthermore, f(0, 0) = 0.

Here X ⊆ R
n denotes, as before, the set of feasible states and the compact set U with U ⊆ R

m

denotes the set of feasible inputs. We assume, that

Assumption 5.2 (0, 0)∈X × U .

The input to the system (5.3) is given by a sampled-data open-loop feedback controller

u(t) = uSD(t; x(ti), ti). (5.4)
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The recalculation instants ti are defined via a partition π. With respect to the feedback uSD we assume
that it stabilizes the origin of the nominal system with a region of attraction R ⊆ X , 0∈R, and that
a Lipschitz assumption on the corresponding decreasing function is satisfied. In the spirit of the
nominal stability results of Chapter 4, this is covered by the following assumption:

Assumption 5.3 (Nominal stability of the sampled-data open-loop feedback)

1. The input generator uSD is admissible with respect to a set R, the input and state constraint

sets U , X , and the partition π.

2. There exists a locally Lipschitz continuous positive definite function α :R → R
+ and a continu-

ous positive definite function β :R → R
+, such that for all ti∈π, x(ti)∈R and τ ∈ [0, ti+1− ti)

(a) α(x(ti + τ ; x(ti), uSD(·; x(ti), ti))) − α(x(ti))

≤ −
∫ ti+τ

ti

β(x(s; x(ti), uSD(·; x(ti), ti)))ds (5.5)

holds.

(b) for all compact strict subsets S ⊂R there is at least one level set Ωc = {x∈R|α(x)≤ c}
s.t. S⊂Ωc.

Remark 5.1 A direct consequence of the local Lipschitz continuity assumption on α(x) in R is that

for any level set Ωc⊆R there exists a Lipschitz constant Lα such that for any x1, x2∈Ωc:

‖α(x1) − α(x2)‖ ≤ Lα‖x1 − x2‖. (5.6)

We denote α in the following as decreasing or Lyapunov like function. Assumption 5.3 guarantees that
all conditions of Theorem 4.1, with respect to the set A = {0}, hold, i.e. the sampled-data open-loop
feedback uSD stabilizes the origin with a region of attraction that at least contains R. The Lipschitz
assumption on the decreasing function α and the existence of compact level sets Ωc is necessary to
achieve the desired robustness properties. This requirement is in correspondence with recent results
on the stability and robustness of discontinuous feedbacks with sample-and-hold (Kellett et al., 2002;
Kellett, 2002).

Assumption 5.3 is in general satisfied for sampled-data open-loop feedbacks derived from locally
Lipschitz continuous instantaneous feedback laws as outlined in Section 4.4.1. While stabilizing
open-loop sampled-data NMPC schemes automatically satisfy the decrease condition (5.5), the sat-
isfaction of the uniform continuity assumption on α and the existence of compact level sets Ωc is
typically not ensured. This is a direct consequence of the fact that NMPC controllers can stabilize
systems that require a discontinuous input, and thus might lead to discontinuity in the decreasing
function (Fontes, 2003; Fontes, 2000a; Meadows et al., 1995; Grimm et al., 2004a). This issue is
further discussed in Section 5.7.
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5.3 Considered Type of Stability

We consider persistent disturbances and the repeated application of open-loop inputs, i.e. we cannot
react instantaneously to disturbances. Thus, asymptotic stability cannot be achieved, and the nominal
region of attraction R can in general not be rendered invariant under disturbances. As a consequence,
we desire only “ultimate boundedness” results, i.e. we desire that the norm of the state after some
time becomes small. Furthermore, we show that the bound can be made arbitrarily small depending
on the bound on the disturbance and the sampling time (practical stability), and that the region where
this holds can be made an arbitrarily inner approximation with respect to R (semi-regional). In view
of Assumption 5.3 and for simplicity of presentation, we parameterize these regions with level sets.

Specifically, we derive bounds for the maximum allowable disturbance and sampling time that ensure
that the state converges from any arbitrary level set of initial conditions Ωc0 ⊂ R in finite time to an
arbitrary small set Ωγ around the origin without leaving a desired set Ωc ⊂ R, compare Figure 5.4.
Certainly, the maximum allowable disturbance depends on the size of the region of convergence Ωγ

Ωc0

Ωc
x(0)

Ωγ

R

Figure 5.4: Set of initial conditions Ωc0 , maximum attainable set Ωc, desired region of convergence Ωγ and

nominal region of attraction R.

and on the “distance” between Ωc and Ωc0 .

The derived results are based on the observation that small disturbances and model uncertainties lead
to a (small) difference between the nominal open-loop state and the real state. As will be shown, the
influence of the disturbance on the decreasing function α can be bounded by

α(x(ti+1))−α(x(ti))≤−
∫ ti+1

ti

β(x(τ ; x(ti), uSD(·; x(ti), ti)))dτ + ε(ti), (5.7)

where ε corresponds to the “disturbance contribution”. Thus, if the disturbance contribution ε “scales”
with the size of the disturbance (it certainly also scales with the recalculation time ti+1−ti), one can
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achieve contraction of the level sets, at least at the recalculation instants. Since the integral contribu-
tion in (5.7) depends on the distance of the system state to the origin, while the disturbance contribu-
tion mainly depends on the size of the disturbances, the decrease cannot continue until reaching the
origin, i.e. in general only practical stability can be achieved.

For the robustness derivations we need the function ∆αmin(c, γ) which is defined as:

Definition 5.1 ( ∆αmin)
For any c>γ>0 with Ωc ⊂ R, the value of ∆αmin(c, γ) is defined as

∆αmin(c, γ) = min
x0∈Ωc/Ωγ

ti∈π

∫ ti+1

ti

β(x̄(s; x0, uSD(·; x0, ti)))ds. (5.8)

Here x̄ is the state of the nominal system under the nominal sampled-data open-loop feedback, i.e.

˙̄x(s) = f(x̄(s), uSD(s; x(ti), ti)), s∈ [ti, ti+1], x̄(ti) = x0. (5.9)

Note that for any c>γ>0 with Ωc⊂R, ∆αmin(c, γ) is nontrivial and finite. In general it is difficult to
obtain an explicit expression or even a good lower bound for ∆αmin. In the case that the recalculation
instants are equidistant, the calculation is simplified, since the second minimization argument, the
time ti, can be removed.

5.4 Robustness to Additive Disturbances

We first examine the robustness with respect to additive disturbances. Specifically, we consider that
the disturbances affecting the system lead to the following modified system equation:

ẋ(t) = f(x(t), uSD(t; x(ti), ti)) + p(t). (5.10)

All appearing disturbances and model-plant uncertainties are lumped in the disturbance term p. With
respect to the additive disturbance p we can derive the following result

Theorem 5.1 (Robustness with respect to additive disturbances)
Given arbitrary level sets Ωγ ⊂Ωc0 ⊂Ωc⊂R and assume that Assumptions 5.1- 5.3 hold. Then, there

exists a constant pmax > 0, such that for any disturbance satisfying for all ti∈π
∥
∥
∥
∥

∫ ti+τ

ti

p(s)ds

∥
∥
∥
∥
≤ pmaxτ, τ ∈ [0, ti+1 − ti], (5.11)

the trajectories of the disturbed system for any x0∈Ωc0

ẋ(t) = f(x(t), uSD(t; x(ti), ti)) + p(t), x(0) = x0, (5.12)

exist for all times, will not leave the set Ωc, x(ti)∈Ωc0 ∀i ≥ 0, and there exists a finite time Tγ such

that x(τ)∈Ωγ ∀τ ≥ Tγ .
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Remark 5.2 The bound (5.11) ensures existence of solutions and convergence to the set Ωc. Exam-

ples of disturbances satisfying condition (5.11) are constant additive disturbances and time varying

disturbances. Note that it is not necessary to require that the disturbance vanishes over time, since

we do not desire to achieve asymptotic convergence. In general, the disturbances also depends on

the state and input or sampling time. The derived result can be used in this case, if the integrability

condition (5.11) on p holds.

Proof: The proof consists of 3 parts. In the first part we establish conditions guaranteeing that the
state does not leave the set Ωc for all x(ti)∈Ωc0 . In the second part we establish conditions such that
the states converge in finite time to the set Ωγ/2. The last part ensures that for all x(ti)∈Ωγ/2 the state
does not leave the set Ωγ .

First part (x(ti+τ)∈Ωc ∀x(ti)∈Ωc0):

We start by comparing the nominal (predicted) trajectory x̄ and the trajectory of the real state x starting
from the same initial state at a ti∈π with x(ti)∈Ωc0 . One specific ti is t = 0, for which we know that
x(0)∈Ωc0 . First note that x(ti + τ) and x̄(ti + τ) can be written as (skipping for sake of notation the
additional arguments the state depends on):

x(ti + τ) = x(ti) +

∫ ti+τ

ti

(f(x(s), uSD(s; x(ti), ti)) + p(s)) ds , (5.13)

x̄(ti + τ) = x(ti) +

∫ ti+τ

ti

f(x̄(s), uSD(s; x(ti), ti))ds. (5.14)

The existence of solutions for x and x̄ is ensured for a sufficiently small τ , if we assume that p
is integrable, and bounded, since Ωc0 ⊂ Ωc ⊂ R. Subtracting x̄ from x and applying the triangle
inequality, we obtain

‖x(ti + τ) − x̄(ti + τ)‖ ≤
∫ ti+τ

ti

(‖f(x(s), uSD(s; x(ti), ti)) − f(x̄(s), uSD(s; x(ti), ti))‖) ds

+

∥
∥
∥
∥

∫ ti+τ

ti

p(s)ds

∥
∥
∥
∥
. (5.15)

Assuming that τ is sufficiently small, such that x(t + τ)∈Ωc we can utilize the Lipschitz property of
f in x. Denoting by Lfx the corresponding Lipschitz constant of f we obtain:

‖x(ti + τ) − x̄(ti + τ)‖ ≤
∫ ti+τ

ti

(
Lfx ‖x(s) − x̄(s)‖

)
ds+

∥
∥
∥
∥

∫ ti+τ

ti

p(s)ds

∥
∥
∥
∥
, (5.16)

which leads to

‖x(ti + τ) − x̄(ti + τ)‖ ≤
∫ ti+τ

ti

Lfx ‖x(s) − x̄(s)‖ ds+ pmaxτ. (5.17)

Applying the Gronwall-Bellman inequality we obtain:

‖x(ti + τ) − x̄(ti + τ)‖ ≤ pmax

Lfx

(
eLfxτ − 1

)
. (5.18)
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Furthermore, since uSD satisfies Assumption 5.3 we know that

α(x(ti + τ)) − α(x(ti)) ≤ α(x(ti + τ)) − α(x̄(ti + τ)) (5.19)

≤ Lα ‖x(ti + τ) − x̄(ti + τ)‖ . (5.20)

Here we used that α(x̄(ti + τ)) − α(x(ti)) ≤ 0, see (5.5). Combining this with (5.18) we obtain

α(x(ti + τ)) − α(x(ti)) ≤
Lαpmax

Lfx

(
eLfxτ − 1

)
. (5.21)

Thus, it is immediately clear that if pmax satisfies

pmax ≤ Lfx

Lα (eLfxπ̄ − 1)
(c− c0), (5.22)

then x(ti + τ)∈Ωc, ∀ τ ∈ [0, ti+1 − ti] if x(ti)∈Ωc0 .

Second part (x(ti)∈Ωc0 and finite time convergence to Ωγ/2):

Assume that (5.22) holds. This assures that x(ti + τ)∈Ωc, ∀τ ∈ [0, ti+1 − ti] as long as x(ti)∈Ωc0 .
Assuming that x(ti) 6∈ Ωγ/2 ⊂ Ωγ ⊂ Ωc we know that

α(x(ti+1)) − α(x(ti)) = α(x(ti+1)) − α(x̄(ti+1)) + α(x̄(ti+1)) − α(x(ti)). (5.23)

Bounding the last two terms on the right via ∆αmin and the first two terms via (5.18), we obtain

α(x(ti+1)) − α(x(ti)) ≤
pmaxLα

Lfx

(
eLfxπ̄ − 1

)
− ∆αmin(c, γ/2). (5.24)

To achieve convergence to the set Ωγ/2 in finite time, we need that the right hand side is strictly less
than zero. If we require that

pmax ≤ Lfx

Lα (eLfxπ̄−1)
∆αmin(c, γ/4),

this is achieved, since then

α(x(ti+1)) − α(x(ti)) ≤ (−∆αmin(c, γ/2) + ∆αmin(c, γ/4))
︸ ︷︷ ︸

=kdec

< 0. (5.25)

Thus, for any x(ti)∈Ωc0 we have finite time convergence to the set Ωγ/2 for a sampling time tm that
satisfies tm − ti ≤ Tγ = c−γ/2

kdec
. From this it furthermore follows that x(ti+1)∈Ωc0 for all x(ti)∈Ωc0 .

Third part (x(ti+1)∈Ωγ ∀x(ti)∈Ωγ/2):

This is trivially satisfied following the arguments in the first part of the proof, requiring that

pmax ≤ Lfx

Lα (eLfxπ̄ − 1)
γ/2. (5.26)

Combining the requirements of all three parts leads to an explicit bound for pmax:

pmax =
Lfx

Lα (eLfxπ̄ − 1)
min {c− c0,∆αmin(c, γ/4), γ/2} . (5.27)
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Remark 5.3 The values γ/4 and γ/2 are chosen for simplicity. In principle the corresponding level

sets only have to be strict subsets of each other and of Ωγ .

Theorem 5.1 establishes robustness of sampled-data open-loop feedbacks with respect to small ad-
ditive disturbances. The degree of robustness strongly depends on the dynamics of the system, the
Lipschitz condition on the decreasing function α, and on the minimum and maximum recalculation
time δi, i.e. π̄ and π.

Remark 5.4 Calculating the robustness bound pmax is difficult, since it is necessary to at least know

a lower bound on the minimum decrease ∆αmin(c, γ/4). This requires, that the decreasing function α

is known, and that the integral and maximization appearing in (5.8) can be performed. Furthermore,

it is in general difficult to obtain suitable bounds on the appearing Lipschitz constants. Nevertheless,

the result is of value, since it underpins that small additive disturbances can be tolerated.

5.5 Robustness to Input Disturbances

The derived results can be easily tailored to disturbances that directly act on the input. The con-
sideration of disturbances acting directly on u is of interest, since this covers a series of practically
important disturbances such as small computational delays, external influences acting on the input,
unconsidered fast actuator dynamics, and numerical errors such as approximated solutions of the
optimal control problem in NMPC.

To achieve the results it is necessary to assume that f is locally Lipschitz in u over a compact set
Ũ which is slightly larger then U with U ⊂ Ũ , since the nominal controller could use values on the
boundary of U :

Assumption 5.4
The vector field f :X×Ũ→R

n is locally Lipschitz in x and u. Furthermore, f(0, 0) = 0.

We assume that the disturbed input is given by uSD(t; x(ti), ti)+ v(t). Following the ideas in the first
part of the proof of Theorem 5.1, assuming that

∥
∥
∥
∥

∫ ti+τ

ti

v(s)ds

∥
∥
∥
∥
≤ vmaxτ, ∀ti∈π, τ ∈ [ti+1 − ti], (5.28)

where vmax is sufficiently small, and that (uSD(t; x(ti), ti) + v(t))∈Ũ , which can always be ensured
if ‖v‖ ≤ vdistU ,Ũ = min

u∈U ,v∈∂Ũ
‖v − u‖, where ∂Ũ denotes the border of Ũ , similarly to equation (5.16)

one can obtain an estimate of the influence of the disturbed input on the state:

‖x(ti + τ) − x̄(ti + τ)‖ ≤
∫ ti+τ

ti

Lfx‖x(s) − x̄(s)‖ds+ Lfuvmaxτ. (5.29)

Here Lfu is the Lipschitz constant of f(x, u) with respect to u over Ωc × Ũ . Applying the Gronwall-
Bellman inequality leads to (5.18) with pmax exchanged by Lfuvmax. The remainder of the proof stays
unchanged, thus we obtain the following result for input disturbances:
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Theorem 5.2 (Robustness with respect to input disturbances)
Given arbitrary level sets Ωγ ⊂Ωc0 ⊂Ωc⊂R and assume that Assumptions 5.2- 5.4 hold. Then, there

exists a constant vmax > 0 such that for any disturbance satisfying for all ti∈π
∥
∥
∥
∥

∫ ti+τ

ti

v(s)ds

∥
∥
∥
∥
≤ vmaxτ, τ ∈ [0, ti+1 − ti], (5.30)

and

‖v(t)‖ ≤ vdistU ,Ũ , t ≥ 0, (5.31)

the trajectories of the disturbed system for any x0∈Ωc0

ẋ(t) = f(x(t), uSD(t; x(ti), ti) + v(t)), x(0) = x0, (5.32)

exist for all times, will not leave the set Ωc, x(ti)∈Ωc0 ∀i ≥ 0, and there exists a finite time Tγ such

that x(τ)∈Ωγ ∀τ ≥ Tγ .

Proof: The proof is nearly equivalent to the proof of Theorem 5.1 and thus omitted here.

A bound for vmax similarly to the additive state disturbance case is given by:

vmax =
Lfx

LαLfu (eLfxπ̄ − 1)
min {c− c0,∆αmin(c, γ/4), γ/2} , (5.33)

where Lfx and Lfu are the Lipschitz constants of f with respect to x and u over Ωc × Ũ .

Besides the important case of disturbances that directly act on the input, the derived result has a series
of direct implications.

Numerical approximation errors:
One direct implication of this result is that approximated solutions to the optimal control problem in
NMPC can be tolerated, if the approximation error is sufficiently small. Such approximated solutions
can for example result from the numerical integration of the differential equations, or errors due to the
application of direct solution approaches where the input is parameterized. Furthermore, Theorem 5.2
gives a theoretical foundation for the real-time iteration scheme as outlined in Section 3.5, in which
only one Newton step optimization is performed per sampling instant (Diehl, Findeisen, Schwarzkopf,
Uslu, Allgöwer, Bock and Schlöder, 2002; Diehl, Findeisen, Schwarzkopf, Uslu, Allgöwer, Bock and
Schlöder, 2003). Based on similar ideas, we have shown in (Diehl et al., 2004; Diehl, Findeisen,
Allgöwer, Schlöder and Bock, 2003) that the real-time iteration scheme for discrete time systems
does lead to nominal stability under certain conditions.

Computational delays:
The derived result underlines that sufficiently small computational delays can be tolerated. Since the
state on which the input calculation is based on remains unchanged, it becomes immediately clear that
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condition (5.28) is satisfied if the delay is sufficiently small. In this case condition (5.31) vanishes,
since the resulting input is only shifted in time. This result is of special interest for open-loop sampled-
data NMPC, since delays will always be present even for fast calculations. It underlines, that if the
delay is sufficiently small, the closed-loop achieves practical stability. In case that the delay is known
and rather large it is, nevertheless, necessary to employ delay compensation techniques as outlined in
Section 4.5.

Neglected fast actuator dynamics:
One further application of the derived result might be the question, if in the case of neglected, but
fast actuator dynamics, practical stability can be guaranteed. In principle this is possible, following
ideas presented in (Kellett et al., 2002) for the case of sampled-data feedback with sample-and-hold
elements. We do not go into details here, since the derivation strongly depends on the actuator dynam-
ics, and since this requires a series of rather technical assumptions to hold. However, we note that in
principle fast neglected actuator dynamics can be tolerated, if the speed of the actuator is sufficiently
high.

5.6 Robustness to Measurement and State Estimation Errors

In this section we consider the problem of measurement and state estimation errors. The derived result
lays the basis for the output-feedback results presented in Chapter 6.

Instead of the real system state x(ti) we assume that at every sampling instant only a disturbed or
estimated state x(ti) + e(ti) is available. The disturbance e(ti) could for example be the result of
measurement noise, small measurement delays, or state estimation errors. Instead of the optimal
feedback (2.9) the following “disturbed” feedback is applied:

u(t; x̂(ti))=uSD(t; x(ti) + e(ti), ti), t∈ [ti, ti+1) . (5.34)

Note that only the state and disturbance e(ti) at the recalculation time is of interest for the robustness,
the influence of disturbances on the state estimate and measurements in between recalculation times
does not influence the achieved results.

Similar considerations as in the additive disturbance case or the input disturbance case lead to the
following theorem:

Theorem 5.3 (Robustness with respect to measurement and state estimation disturbances)
Given arbitrary level sets Ωγ ⊂Ωc0 ⊂Ωc⊂R and assume that Assumptions 5.1- 5.3 hold. Then, there

exists a constant emax > 0 such that for any measurement disturbance and state estimation error e(ti)

satisfying for all ti∈π
‖e(ti)‖ ≤ emax, (5.35)

the trajectories of the system for any x0∈Ωc0

ẋ(t) = f(x(t), uSD(t; x(ti) + e(ti), ti)), x(0) = x0, (5.36)
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exist for all times, will not leave the set Ωc, x(ti)∈Ωc0 ∀i ≥ 0, and there exists a finite time Tγ such

that x(τ)∈Ωγ ∀τ ≥ Tγ .

Proof: The proof is similar to the proof of Theorem 5.1 divided in three parts.

First part (x(ti+τ)∈Ωc ∀x(ti)∈Ωc0):

We consider the difference in the value function between the initial state x(ti)∈Ωc0 at a sampling time
ti and the developing state x(ti+τ ; x(ti), uSD(·; x(ti) + e(ti), ti)). For simplicity of notation and ease
of understanding we use the following short notation: x̂i = x(ti) + e(ti), xi = x(ti), and ei = e(ti).
Furthermore, ux̂i

denotes the open-loop input resulting from x̂(ti), i.e. ux̂i
=uSD(·; x(ti) + e(ti), ti).

By similar considerations as for Theorem 5.1 we know that at least as long as the state does not leave
the set Ωc the following inequality is valid

α(x(τ ; xi, ux̂i
))−α(xi) = α(x(τ ; xi, ux̂i

)) − α(x(τ ; x̂i, ux̂i
))

+ α(x(τ ; x̂i, ux̂i
)) − α(x̂i) + α(x̂i) − α(xi). (5.37)

One way to ensure that x̂i ∈Ωc if xi ∈Ωc0 is to require that Lα ≤ c− c0. Following the derivation of
the previous two proofs, the first two terms can then be bounded via Lα and the Gronwall-Bellman
inequality by:

α(x(ti + τ ; xi, ux̂i
)) − α(x(ti + τ ; x̂i, ux̂)) ≤ Lαe

Lfxτ‖ei‖. (5.38)

Thus, we obtain:

α(x(ti + τ ; xi, ux̂)) − α(xi) ≤ Lαe
Lfxτ‖ei‖ −

∫ ti+τ

ti

β(x(s; x̂i, ux̂i
))ds + Lα‖ei‖ (5.39)

Since the contribution of the integral is always negative, it follows that if

emax ≤ 1

Lα (eLfxπ̄ + 1)
(c− c0) (5.40)

which implies that Lαemax ≤ c− c0, then x(ti + τ)∈Ωc ∀τ ∈(ti+1− ti).

Second part (x(ti)∈Ωc0 and finite time convergence to Ωγ/2):

We assume that (5.40) holds and that x(ti)∈Ωc0 . This assures that x(ti + τ)∈Ωc, ∀τ ∈ [0, ti+1− ti].
Considering (5.39) it is clear, that if emax satisfies

Lα

(
eLfxπ̄ + 1

)
emax ≤ 1

2
∆αmin(c, γ/4) and Lαemax ≤ γ/4,

then we achieve finite time convergence from any xi ∈Ωc0\Ωγ/4 to the set Ωγ/2 for a sampling time
tm satisfying tm − ti ≤ Tγ = c−γ/2

kdec
. We can also conclude that x(ti+1)∈Ωc0 for all xi∈Ωc0 .

Third part (x(ti+1)∈Ωγ ∀x(ti)∈Ωγ/2):

This is trivially satisfied following the arguments in the first part of the proof, assuming that

Lα

(
eLfxπ̄ + 1

)
emax ≤ γ/2. (5.41)
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Combining the requirements of all three parts leads to the following equation that emax must satisfy,
such that stability is guaranteed:

emax ≤ 1

Lα (eLfxπ̄ + 1)
min{c− c0, 1/2 ∆αmin(c, γ/4), γ/4}. (5.42)

The derived result underpins that sufficiently small measurement/estimation errors can be tolerated to
achieve stability in a practical sense. Thus, small measurement noise, but also state observation errors
can be tolerated. The derived results lays the basis for nonlinear separation principle like results as
presented in the Chapter 6.

5.7 Inherent Robustness of Sampled-data Open-loop NMPC

In the case of NMPC some inherent robustness results already exist (Magni and Sepulchre, 1997;
Chen and Shaw, 1982; Mayne et al., 2000; Scokaert et al., 1997). However, these results are ei-
ther only valid for instantaneous NMPC (Magni and Sepulchre, 1997; Chen and Shaw, 1982; Mayne
et al., 2000), or discrete time NMPC (Scokaert et al., 1997), or they consider special NMPC im-
plementations, such as dual-mode predictive control (Michalska and Mayne, 1993) or contractive
predictive control formulations (de Oliveira Kothare and Morari, 2000; Yang and Polak, 1993).

The inherent robustness results derived in this section are also applicable to NMPC. As outlined in
Section 4.4.2, many NMPC approaches that guarantee stability already satisfy the decrease condi-
tion (5.5) of Assumption 5.3. However, it is in general not possible to answer the question if a given
sampled-data open-loop NMPC schemes satisfies the Lipschitz condition on the decreasing function,
which in the case of NMPC is the value function. This problem stems from the fact that the applied
input is based on the solution of an optimal control problem, which can be discontinuous as a func-
tion of the considered state. While this is for example of advantage in the case of the stabilization of
systems that require a discontinuous input (Meadows et al., 1995; Fontes, 2000b; Fontes, 2003), and
thus possibly lead to a discontinuous value function, it is of disadvantage with respect to the inherent
robustness considerations in this chapter.

There are only a few NMPC schemes that guarantee that the value function is locally Lipschitz. Most
of these do not consider constraints and are based on control Lyapunov function considerations, see
e.g. (Jadbabaie et al., 2001). Also in the case that the system is linear and that only linear constraints
are present, it is well known that the resulting value function is locally Lipschitz.

While for small systems the question if the value function is Lipschitz might be verified by numeri-
cally calculating the value function and checking approximately the local Lipschitz property, this is
certainly not practicable for large systems. Thus, further research is needed investigating the question
when the value function is Lipschitz, or how this, even in the presence of constraints could be ensured.
Starting points might be the discrete time considerations presented in (Grimm et al., 2003b).

The derived results are still applicable to NMPC, at least locally, since many sampled-data open-loop
feedback schemes, satisfy the local Lipschitz assumption of the value function locally around the
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origin (Chen and Allgöwer, 1998b; Chen et al., 2000; Mayne et al., 2000; Findeisen and Allgöwer,
2001).

5.8 Summary

In this chapter we derived inherent robustness properties for sampled-data open-loop feedbacks.
Specifically, we showed that if the decreasing function of the sampled-data open-loop feedback is
continuous, then the closed-loop possesses inherent robustness properties with respect to additive dis-
turbances, disturbances in the input signal, and disturbances/measurement errors in the state that is
used to calculate the open-loop input signal. While the derived results can in general not be used for
the design of robustly stabilizing feedbacks, they underpin that sampled-data open-loop feedbacks
can reject certain disturbances while guaranteeing practical stability. The main limitation of the de-
rived results is that they require that the decreasing function is locally Lipschitz over the region of
interest. While for sampled-data open-loop feedbacks stemming from the feedforward simulation of
an instantaneous locally Lipschitz feedback this condition is often satisfied, in the case of sampled-
data open-loop NMPC it is often not possible to provide a clear answer of whether the value function
is locally Lipschitz. However, many NMPC schemes at least satisfy the continuity assumption lo-
cally around the origin. In the case of a continuous value function the derived results underpin that
sampled-data open-loop NMPC can reject a series of practically relevant disturbances. Of special in-
terest is the robustness with respect to numerical errors in the solution of the optimal control problem,
and the robustness with respect to state measurement/estimation errors.

We utilize the results on the robustness with respect to state estimation errors in the next chapter to
derive stability results for the sampled-data open-loop output-feedback problem.
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Chapter 6

Sampled-data Open-loop Output-feedback

The results on nominal stability and on inherent robustness of sampled-data open-loop feedback are
based on the assumption that the full state information is available. In practical applications it is,
however, often not possible to measure all states. In practice the problem of output-feedback is
often “solved” according to the certainty equivalence principle, i.e. instead of the true, but unknown,
system state, a state estimate provided by a state observer is used for feedback. This often leads to
good performance of the closed-loop. However, since no general separation principle for nonlinear
systems exists, the stability of the closed-loop cannot be deduced from the stability of the observer and
the state-feedback separately. In this chapter we derive conditions ensuring semi-regional practical
stability of the closed-loop for a broad class of sampled-data open-loop feedback controllers and state
observer.

The derived results are inspired by special nonlinear separation principles for instantaneous feedbacks
employing high-gain observers, see e.g. (Esfandiari and Khalil, 1992; Teel and Praly, 1995; Atassi and
Khalil, 1999; Maggiore and Passino, 2004; Maggiore and Passino, 2003; Shim and Teel, 2001; Shim
and Teel, 2003). The state estimation error is basically considered as a disturbance acting on the
nominal closed-loop and it is shown that if the sampled-data feedback possesses inherent robustness
properties and if the observer error converges sufficiently fast, it is possible to achieve stability.

This chapter is structured as follows: In Section 6.1 we present the considered setup. Section 6.2 con-
tains the main results, explicit stability conditions on the sampled-data open-loop feedback controller
and the state observer such that the closed-loop is semi-regionally practically stable. Furthermore,
comments with respect to the achieved results for sampled-data open-loop NMPC are given. Sec-
tion 6.3 comments on some of the observers satisfying the required conditions. The derived results
are exemplified in Section 6.4 considering two examples, the control of a pendulum-cart system and
the control of a mixed-culture bioreactor.

The presented results are generalizations of the output-feedback results for NMPC as presented
in (Imsland, Findeisen, Bullinger, Allgöwer and Foss, 2003; Findeisen et al., 2003b; Findeisen et al.,
2003d; Findeisen et al., 2003c; Findeisen, Imsland, Allgöwer and Foss, 2002).
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6.1 Setup

We consider the stabilization of time-invariant nonlinear systems of the form

ẋ(t) = f(x(t), u(t)), x(0) = x0 (6.1a)

y(t) = h(x(t), u(t)) (6.1b)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m is the input vector, and y(t) ∈ R
p are the measured

outputs. As before, besides stabilization we require the input to satisfy the input constraints u ∈ U ⊂
R

p and the states to stay in an admissible set X ⊆ R
n. We furthermore assume the following:

Assumption 6.1 (0, 0)∈X × U .

Assumption 6.2 The vector field f :X×U→R
n is locally Lipschitz in u and x, with f(0, 0) = 0.

The input to the system (5.3) is given by a sampled-data open-loop feedback controller

u(t) = uSD(t; x̂(ti), ti). (6.2)

Here x̂(ti) is the estimated state provided by the used state observer. In the following we denote the
state estimation error by e = x− x̂.

With respect to the sampled-data open-loop feedback uSD we assume slightly modified conditions, in
comparison to the requirements of Theorem 5.3:

Assumption 6.3 (Conditions on the sampled-data open-loop feedback)

1. The input generator uSD is admissible with respect to a set R, the input and state constraint

sets U , X , and the partition π.

2. For all x(ti) 6∈ R, ti∈π the sampled-data open-loop feedback uSD is defined as

uSD(τ ; x(ti), ti) = uc, τ ∈ [ti, ti+1], (6.3)

where uc ∈ U is constant.

3. There exists a locally Lipschitz continuous positive definite function α :R → R
+ and a contin-

uous positive definite function β :R → R
+, such that for all ti∈π, x(ti)∈R and τ ∈ [ti, ti+1)

(a) α(x(ti + τ ; x(ti), uSD(·; x(ti), ti))) − α(x(ti))

≤ −
∫ ti+τ

ti

β(x(s; x(ti), uSD(·; x(ti), ti)))ds (6.4)

holds.

(b) for all compact strict subsets S ⊂R there is at least one level set Ωc = {x∈R|α(x)≤ c}
s.t. S⊂Ωc.
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The additional Assumption 6.3.2. is necessary, since the state estimate of the observer can be outside
of R, at least in some initial phase.

In the next section we derive semi-regional practical stability assuming that after an initial phase the
observer error at the recalculation instants can be made sufficiently small. Therefore we assume the
following:

Assumption 6.4 (Observer error convergence)
For any desired maximum state estimation error emax > 0 there exist observer parameters such that

‖x(ti) − x̂(ti)‖ ≤ emax, ∀ti ≥ tkconv . (6.5)

Here kconv> 0 is a freely chosen, but fixed number of recalculation instants after which the observer

error has to satisfy (6.5).

Remark 6.1 Depending on the observer, further conditions on the system might be necessary (e.g.

observability assumptions). Also, note that the observer does not have to operate continuously since

the state information is only required at the recalculation instants ti. Thus, it is in principle possible

to apply a discrete time observer for the continuous time system, or a state estimator utilizing a

certain piece of the output trajectory at once, such as moving horizon state estimation (Michalska

and Mayne, 1995; Zimmer, 1994; Alamir, 1999; Rao et al., 2003).

In principle we follow the ideas used for inherent robustness with respect to measurement errors in
the previous chapter, i.e. we show that if emax is sufficiently small, then a decrease of the disturbed
decreasing function α from recalculation time to recalculation time can be retained. However, in
comparison to the previous results we must take into account that the observer requires a certain
convergence time to achieve the desired maximum observer error emax. To avoid that the system state
leaves the set Ωc during this time it might thus be necessary to sufficiently decrease the maximum
recalculation time π̄.

6.2 Semi-regional Practical Stability

Under the given setup the following theorem holds

Theorem 6.1 (Semi-regional practical stability of sampled-data open-loop output-feedback)
Given level sets Ωγ , Ωc, and Ωc0 with Ωγ ⊂Ωc0 ⊂Ωc⊂R. Then, under the Assumptions 6.1- 6.4, there

exists a maximum allowable observer error emax and a maximum recalculation time π̄ such that for

all initial conditions x0∈Ωc0 the state trajectories of the closed-loop

ẋ(t) = f(x(t), uSD(t; x̂(ti), ti)), x(0) = x0 (6.6a)

y(t) = h(x(t), u(t)), (6.6b)

satisfy x(τ)∈Ωc τ ≥ 0, and there exists a finite time Tγ such that x(τ)∈Ωγ ∀τ ≥ Tγ .
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Remark 6.2 We limit the consideration to level sets for the desired set of initial conditions (Ωc0),

the maximum attainable set (Ωc) and the set of desired convergence (Ωγ) for simplification of the

presentation only. In principle, one can consider arbitrary compact sets containing the origin which

are subsets of each other and of R. Assumption 6.3.3 (b) assures that it is always possible to find

suitable covering level sets in this case .

Proof: The proof is similar to the proof of Theorem 5.3. The first part ensures that the system state
does not leave the maximum admissible set Ωc during the convergence time tkconv of the observer.
This is achieved by sufficiently decreasing the maximum recalculation time π̄. In the second part is
shown that for a sufficiently small emax the system state converges to the set Ωγ/2. The third part
establishes that the state does not leave the set Ωγ once it has entered it at a recalculation time. For
the derivations we use the same notation as in the proof of Theorem 5.3.

First part (x(ti+τ)∈Ωc ∀x(ti)∈Ωc0):

Note that Ωc0 is strictly contained in Ωc and thus also in Ωc1 , with c1 = c0 + (c− c0)/2. Thus, there
exists a time Tc1 such that x(τ) ∈ Ωc1 , ∀0 ≤ τ ≤ Tc1 . The existence is guaranteed, since as long
as x(t) ∈ Ωc, ‖x(t) − x0‖ ≤

∫ t

0
‖f(x(s), u(s))‖ds ≤ kΩct, where kΩc is a constant depending on

the Lipschitz constants of f and the bounds on u. We take Tc1 as the smallest (worst case) time to
reach the boundary of Ωc1 from any point x0∈Ωc0 allowing u(s) to take any value in U . We pick the
maximum recalculation time π̄ such that π̄ ≤ Tc1/kconv, it is fixed for the remainder of the proof. By
Assumption 6.4 there always exist observer parameters such that after this time the observer error is
smaller than any desirable emax.

As for the proof of Theorem 5.3, the following equality is valid as long as the states stay within Ωc:

α(x(τ ; xi, ux̂))−α(xi) = α(x(τ ; xi, ux̂)) − α(x(τ ; x̂i, ux̂))

+ α(x(τ ; x̂i, ux̂)) − α(x̂i) + α(x̂i) − α(xi). (6.7)

One way to ensure that x̂i∈Ωc if xi∈Ωc1 is to require that Lαemax ≤ c− c1. Thus, we obtain:

α(x(ti + τ ; xi, ux̂)) − α(xi) ≤ Lαe
Lfxτ‖ei‖ −

∫ ti+τ

ti

β(x(s; x̂i, ux̂))ds + αK,Ωc(‖ei‖) (6.8)

As the contribution of the integral is negative, requiring

Lα(eLfxπ̄ + 1)emax ≤ c− c1, (6.9)

yields x(ti + τ)∈Ωc ∀τ ∈(ti+1− ti).

The second and third part of the proof are the same as for Theorem 5.3. From the combination of all
three parts we finally obtain that if

π̄ ≤ Tc1/kconv (6.10)

and if we choose the maximum observer error emax such that

emax ≤ 1

Lα(eLfxπ̄ + 1)
min{c− c1,

1

2
∆αmin(c, γ/4), γ/4}, (6.11)

then for all x0∈Ωc1 : x(τ)∈Ωc τ ≥ 0, and there exists a finite time Tγ such that x(τ)∈Ωγ ∀τ ≥ Tγ .
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The most critical conditions for the application of the derived semi-regional practical stability result is
the requirement that the observer satisfies Assumption 6.4. Even so this assumption is rather strong,
a series of observer designs exist achieving the desired properties, as described in Section 6.3.

In the spirit of the results presented in (Teel and Praly, 1995; Atassi and Khalil, 1999) it can be
argued that the derived results are a special separation principle for sampled-data open-loop output-
feedback. However, one should note that in comparison to the linear separation principle, the observer
and controller design are not completely independent. Specifically, the speed of convergence of the
observer must be sufficiently high. Also, the recalculation time cannot be freely chosen. It rather
must be sufficiently small to avoid the system state leaving the admissible set in the initial phase, in
which the observer error has not converged.

As for the inherent robustness of sampled-data open-loop feedback, the derived bounds can in general
not be used for the design of a suitable observer and feedback. The result rather underpins that if the
observer error can be decreased sufficiently fast, then the closed-loop system is semi-regional practical
stable.

Remark 6.3 (Recovery of performance) If the input generator provides input trajectories depend-

ing continuously on the state, it is possible to show that the performance of the state-feedback is

recovered as π̄ → 0 and emax → 0. For a derivation of this result for nonlinear predictive control

see (Imsland, Findeisen, Bullinger, Allgöwer and Foss, 2003).

Remark 6.4 (Remarks on output-feedback sampled-data open-loop NMPC) As for the inher-

ent robustness results, the main limitation of the derived results with respect to sampled-data open-

loop NMPC is the uniform local Lipschitz requirement on the decreasing function. As mentioned in

Section 5.7, this property is often difficult to verify, especially since the value function is typically

not known explicitly. In the case of NMPC the derived result have, in comparison to other output-

feedback results (Scokaert et al., 1997; Magni, De Nicolao and Scattolini, 2001a; de Oliveira Kothare

and Morari, 2000), the advantage that the obtained stability is semi-regional rather then local.

6.3 Suitable Observer Designs

Satisfying Assumption 6.4 is in general difficult. However, by now there exist a series of observer
designs satisfying Assumption 6.4. Examples are high-gain observers (Tornambè, 1992), optimization
based moving horizon observers with contraction constraint (Michalska and Mayne, 1995), observers
possessing a linear error dynamics where the poles can be chosen arbitrarily (e.g. based on normal
form considerations and output injection (Bestle and Zeitz, 1983; Krener and Isidori, 1983)), and
observers achieving finite convergence time such as sliding mode observers (Drakunov and Utkin,
1995) or the approach presented in (Engel and Kreisselmeier, 2002; Menold et al., 2003). We shortly
provide some more details on high-gain observers and moving horizon observers.
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6.3.1 High Gain Observers

One possible observer class satisfying Assumption 6.4 are high-gain observers. Basically, high-gain
observers obtain a state estimate based on approximated derivatives of the output signals. They are
in general based on the assumption that the system is uniformly completely observable. Uniform
complete observability is defined in terms of the observability map H, which is given by successive
differentiation of the output y (assuming f and h, as well as the input are sufficiently often differen-
tiable):

H(x, U) =
[

y1, . . . y
(r1)
1 , y2, . . . , y

(rp)
p

]T

=
[
h1(x, u), . . . , ψ1,r1(x, u, u̇, . . . , u

(r1)), h2(x, u), . . . , ψp,rp(x, u, u̇, . . . , u
(rp))

]T
.

Here
∑p

i=1(ri + 1)=n, and U=[u1, u̇1, . . . , u
(m1)
1 , u2, u̇2, . . . , um, u̇m, . . . , u

(mm)
m ]T ∈R

mU where the
mi denote the number of really necessary derivatives of the input i with mU =

∑m
i=1(mi + 1). The

ψi,j’s are defined via the successive differentiation of y

ψi,0(x, u) = hi(x, u), i = 1, . . . , p (6.12a)

ψi,j(x, u, . . . , u
(j))=

∂ψi,j−1

∂x
·f(x, u) +

j∑

k=1

∂ψi,j−1

∂u(k−1)
· u(k), i = 1, . . . , p, j = 1, . . . , rp. (6.12b)

Note that in general, not all derivatives of the ui up to order max{r1, . . . , rp} appear in ψi,j.

Uniform complete observability basically ensures the existence of an invertible observability
map (Tornambè, 1992; Teel and Praly, 1995; Shim and Teel, 2003):

Definition 6.1 (Uniform Complete Observability)
The system (2.1) is uniformly completely observable if there exists a set of indices {r1, . . . , rp} such

that the mapping defined by Y = H(x, U) is smooth with respect to x and its inverse from Y to x is

smooth and onto for any U .

The inverse of H with respect to x is denoted by H−1(Y, U), that is x = H−1(Y, U).

Remark 6.5 In general the set of indices {r1, . . . , rp} is not unique, different H might exist. One can

use this degree of freedom to find a H such that only a minimum number of derivatives of u, possibly

none, are necessary. This is desirable, since all inputs u and all the derivatives of u that appear in U

must be known.

For simplicity of presentation we assume in the following that the observability map does not depend
on the input and its derivatives:

Assumption 6.5 H(x, U) = H(x).

More general results specifically considering sampled-data open-loop NMPC allowing the observ-
ability map H to depend on the input and its derivatives can be found in (Findeisen et al., 2003b).
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Applying the coordinate transformation z = H(x) leads to the system in observability normal form
in z coordinates

ż = Az +Bφ(z, u), y = Cz. (6.13)

The matrices A, B and C have the following structure

A = blockdiag [A1, . . . Ap] , Ai =





0 1 0 ··· 0
0 0 1 ··· 0
...

...
0 ··· ··· 0 1
0 ··· ··· ··· 0





ri×ri

(6.14a)

B = blockdiag [B1, . . . , Bp] ,Bi =
[

0 · · · 0 1
]T

ri×1
(6.14b)

C = blockdiag [C1, . . . , Cp] ,Ci =
[

1 0 · · · 0
]

1×ri

, (6.14c)

and φ : R
n×R

m → R
p is the “system nonlinearity” in observability normal form. In these coordinates

the high-gain observer

˙̂z = Aẑ +Hε(y − Cẑ) +Bφ̂(ẑ, u), z(0) = z0 (6.15)

allows recovery of the states (Tornambè, 1992; Atassi and Khalil, 1999) z from information of y(t)
only, provided that φ̂ in (6.15) is globally bounded. The function φ̂ : R

n×R
m → R

p is the approxima-
tion of φ used in the observer. The observer gain matrixHε is given byHε =blockdiag [Hε,1, . . . , Hε,p],
withHT

ε,i =[α
(i)
1 /ε, α

(i)
2 /ε

2, . . . , α
(i)
ri /ε

ri ], where ε is the so-called high-gain parameter since 1/ε goes
to infinity for ε→ 0. The α(i)

j s are design parameters and must be chosen such that the polynomials

sri +α
(i)
1 s

ri−1+· · ·+α(i)
ri−1s+α

(i)
ri

=0, i=1, . . ., p (6.16)

are Hurwitz. Note that estimates obtained in z coordinates can be transformed back to the x coordi-
nates by x̂ = H−1(ẑ).

As shown in (Atassi and Khalil, 1999), under the assumption that the initial observer error is out
of a compact set and that the system state stays in a bounded region, for any desired emax and any
convergence time tkconv there exists a maximum ε? such that: for any ε ≤ ε? the observer error
stays bounded and satisfies: ‖x(τ) − x̂(τ)‖ ≤ emax ∀τ ≥ tkconv . Thus, the high-gain observer
satisfies Assumption 2. Further details, specifically considering sampled-data open-loop NMPC as
input generator allowing H to depend on the input and its derivatives can be found in (Findeisen
et al., 2003b; Findeisen, Imsland, Allgöwer and Foss, 2002).

Remark 6.6 (Possible expansions and generalizations) If the input and its derivatives appear in

the observability map, it is necessary to require that the input provided by the input generator must

be sufficiently smooth. Furthermore, since in general the input jumps at the recalculation instants,

it might be necessary to reset the observer to avoid jumps and divergence of the state estimates,

compare (Findeisen et al., 2003b; Findeisen, Imsland, Allgöwer and Foss, 2002). Moreover it is

possible to formulate the high gain observer purely in the original coordinates, thus avoiding explicit

knowledge of the inverse of the observability map (Maggiore and Passino, 2000; Findeisen et al.,

2003a). In (Imsland, Findeisen, Allgöwer and Foss, 2003a; Imsland, Findeisen, Allgöwer and Foss,

2003b), conditions on the system and the observer are given for the state to actually converge to the

origin.
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6.3.2 Moving Horizon Observers

Moving horizon estimators (MHE) are optimization-based observers. The state estimate is obtained
by a dynamic optimization problem minimizing the deviation between the measured output and the
simulated output starting from an estimated initial state at time t− T , where T is the window length
used for the state estimation. Various moving horizon state estimation approaches exist (Michalska
and Mayne, 1995; Zimmer, 1994; Alamir, 1999; Rao et al., 2003). We focus here on the MHE
scheme with contraction constraint as introduced in (Michalska and Mayne, 1995) since it satisfies
the assumptions needed. This approach basically proposes to solve at all recalculation instants a dy-
namic optimization problem, considering the output measurements spanning over a certain estimation
window in the past. Assuming certain reconstructability assumptions to hold and that no disturbances
are present, one can, in principle, estimate the system state exactly by solving one single dynamic
optimization problem. However, since this involves the solution of a global optimization problem in
real-time, it is proposed in (Michalska and Mayne, 1995) to only improve the estimate at every re-
calculation time requiring the integrated error between the measured output and the simulated output
is decreasing from recalculation instant to recalculation instant. Since the contraction rate directly
corresponds to the convergence of the state estimation error and since it can in principle be freely
chosen this MHE scheme satisfies all required assumptions. Thus, it can be used together with a
state-feedback NMPC controller to achieve semi-regional practical stability.

6.4 Examples

In this section, we exemplify the derived result considering the control of a pendulum-cart system and
of a mixed-culture bioreactor using high-gain observers for state recovery.

6.4.1 Example I: Control of a Bioreactor

We consider the control of a continuous mixed culture bioreactor as presented in (Hoo and Kantor,
1986). Schematics of the considered process are shown in Figure 6.1. The bioreactor contains a

c1

I

S

c2

If , q, Sf

I, S, q

V = const

resistant strain, c1

cell density cell density

Substrat, S

sensitive strain, c2

Inhibitor, I

competition

Figure 6.1: Schematic diagram of the continuous mixed culture bioreactor and the strain/inhibitor interactions.
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culture of two cell strains, in the following called species 1 and 2 having different sensitivity to an
external growth-inhibiting agent. The interactions of the two cell populations are illustrated in the
right part of Figure 6.1. The cell density of the inhibitor resistant strain is denoted by c1, the cell
density of the inhibitor sensitive strain is denoted by c2, and the substrate and inhibitor concentrations
in the reactor are denoted by S and I . Based on the full model described in (Hoo and Kantor, 1986)
a reduced third order model of the following form can be obtained

dc1
dt

= µ1(S)c1 − c1u1, (6.17)

dc2
dt

= µ2(S, I)c2 − c2u1, (6.18)

dI

dt
= −pc1I + u2 − Iu1. (6.19)

The inputs are the dilution rate u1 and the inhibitor addition rate u2. The deactivation constant of the
inhibitor for species 2 is denoted by p. The specific growth rates µ1(S) and µ2(S, I) are given by

µ1(S) =
µ1,MS

K + S
, µ2(S, I) =

µ2,MS

K + S

KI

KI + I
. (6.20)

where K, KI , µ1,M and µ2,M are constant parameters, see Table 6.1. The substrate concentration is

Table 6.1: Parameters of the bioreactor model.

Parameter Value Parameter Value

µ1,M 0.4hr−1 µ2,M 0.5hr−1

K 0.05g/l KI 0.02g/l

Y1 0.2 Y2 0.15

Sf 2.0g/l p 0.5hr−1/g

given by
S = Sf − c1

Y1
− c2
Y2
. (6.21)

Here Y1, Y2 are the yields of the species and Sf is the substrate inlet concentration. The control
objective is to stabilize the steady-state c1s = 0.016g/l, c2s = 0.06g/l, Is = 0.005g/l. The outputs
available for feedback are y1 = ln c1

c2
, which can be thought of as a turbidity measurement and the cell

density of species one, y2 = c1. Performing the following coordinate transformation

z1 = ln
c1
c2
, z2 = µ1(S) − µ2(S, I), z3 = c1, (6.22)

we obtain the system in observability normal form:

ż1 = z2, (6.23a)

ż2 = φ(z, u1, u2), (6.23b)

ż3 = ψ(z, u1, u2), (6.23c)

y1 = z1 (6.23d)

y2 = z3 (6.23e)
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The states z1 and z2 are estimated from the output measurement y1 via a high-gain observer as de-
scribed in Section 6.3.1. The parameters α1 and α2 in the high-gain observer (6.15) are chosen to
α1 =

√
2, α2 = 1. The state z3 is not estimated, since it is directly available by measurement y2.

As state-feedback NMPC scheme, quasi-infinite horizon NMPC (Chen and Allgöwer, 1998a) is used.
The cost F weighs the quadratic deviation of the states and inputs in the new coordinates from their
desired steady-state values. For simplicity, unit weights on all states and inputs are considered. A
quadratic upper bound E on the infinite horizon cost and a terminal region E satisfying the assump-
tions of (Chen and Allgöwer, 1998a) are calculated using LMI/PLDI-techniques (Boyd et al., 1994).
The piecewise linear differential inclusion (PLDI) representing the dynamics in a neighborhood of the
origin is found using the methods described in (Slupphaug et al., 2000). The recalculation instants are
equidistant, i.e. δr = 2hrs, while the prediction horizon Tp is chosen to be Tp = 15hrs. The optimal
input at every recalculation instant is obtained via a direct solution approach implemented in Mat-
lab, where the input is discretized as piecewise constant, with 10 control intervals per recalculation
interval.

To illustrate the stability and performance of the closed-loop, we consider different observer gains ε
while keeping (the sufficiently small) recalculation time δr constant. In all simulations, the observer
is initialized with the correct values for z1, since this can be directly obtained from the measurements,
whereas z2 is initialized with the steady-state value. Figure 6.2 exemplary shows closed-loop system
trajectories projected onto the c1/c2 phase plane for different observer gains k = 1

ε
in comparison

to the state-feedback NMPC controller starting from the same initial condition. Figure 6.3 shows
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Figure 6.2: Phase plot of c1 and c2. SS denotes the desired steady-state.

the corresponding plots of the inhibitor concentration I and the inhibitor addition rate (input u2) for
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different values of ε. Additionally, the real cost occurring, i.e. the integrated quadratic error between
the steady-state values for the states and inputs in transformed coordinates, is plotted. The cost of
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Figure 6.3: Trajectories of I , u2 and summed up cost for different values of the high-gain parameter ε starting

from the same initial conditions for the system and observer.

the output-feedback controller approaches the cost of the state-feedback controller for decreasing ε,
which shows the recovery of performance. We use relatively low gains for the observer. This example
verifies the stability of the closed-loop and the recovery of performance for increasing values of the
observer gain.

6.4.2 Example II: Control of a Pendulum-cart System

As second example we consider the control of an (unstable) inverted pendulum on a cart, see Fig-
ure 6.4. The angle of the pendulum with the vertical axis is denoted by z1. The input to the system
is given by the force u acting on the cart’s translation. It is constrained to −10N ≤ u(t) ≤ 10N.
The control objective is to stabilize the angle z1 = 0 (upright position) while the cart’s position is not
constrained (and thus not modeled nor controlled). It is assumed that only the angle z1 but not the an-
gular velocity can be measured. The model of the system is given by the following equations (Imsland,
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u(t)
M

m, l

z1(t)

Figure 6.4: Pendulum on a cart.

Findeisen, Bullinger, Allgöwer and Foss, 2003):

ż1 = z2, (6.24a)

ż2 =
ml cos(z1) sin(z1)z

2
2 − g(m+M) sin(z1) + cos(z1)u

ml cos2(z1) − 4
3
(m+M)l

, (6.24b)

y = z1, (6.24c)

where z2 is the angular velocity of the pendulum. The parameters M = 1kg, m = 0.2kg, l = 0.6m
and g = 10m

s2 are constant.

The stage cost is quadratic and the weights on the states and input are chosen as unit weights for
simplicity, i.e. F (z, u) = z> [ 1 0

0 1 ] z + u2. Quasi-infinite horizon NMPC (Chen and Allgöwer,
1998b; Findeisen and Allgöwer, 2001) is used as state-feedback controller. The terminal penalty
cost E and the terminal region E are obtained using LMI/PLDI-techniques. The resulting termi-
nal penalty cost E is given by: E(z) = z> [ 311.31 66.20

66.20 34.99 ] z, and the terminal region E is given by
E = {z ∈ R

2|E(z) ≤ 20}.

The control horizon Tp is chosen to 0.5s. The recalculation time is fixed to δr = 0.05s and the input
signal for the direct solution of the optimal control problem is parameterized as piecewise constant
with δs = 0.025s. All simulations and calculations are performed in Matlab. Figure 6.5 shows the
region of attraction and the contour lines of the value function of the sampled-data open-loop state-
feedback controller. The plot is obtained solving the open-loop state-feedback NMPC problem for
different initial conditions of z1 and z2.

In the output-feedback case, whenever the state estimate leaves the region of attraction of the state-
feedback NMPC scheme the input is fixed to the steady-state value 0. The states z1 and z2 are esti-
mated from y using a high-gain observer. Note that the system is already given in observability normal
form. The observer parameters α1 and α2 are chosen to α1 = 2 and α2 = 1. For all simulations, the
observer is started with zero initial conditions, i.e. ẑ1 = ẑ2 = 0.

Figure 6.6 shows the phase plot of the system states and the observer states of the closed-loop system
for different values of the observer parameter ε. As expected, for decreasing values of ε the trajec-
tories of the state-feedback control scheme are recovered. Comparing both plots, one sees that for
ε = 0.1, when the observer state and the real state are at the boundary of the region of attraction of the
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Figure 6.5: Level sets of the value function of the sampled-data open-loop state-feedback controller of the

pendulum on a cart.

−1 −0.5 0 0.5 1 1.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

z [rad]
1

z 
[r

ad
/s

]
2

state−feedback
 ε=0.05
 ε=0.09
 ε=0.1

region of attraction  
state−feedback        

terminal region

−0.5 0 0.5 1

−2

0

2

4

6

8

z [rad]∧
1

z 
[r

ad
/s

]
∧

2

 ε=0.05
 ε=0.09
 ε=0.1

region of attraction 
state−feedback       

Figure 6.6: Phase plot of the nominal system states (left) and the observer states (right).

state-feedback controller, a small estimation error does lead to infeasibility of the open-loop problem
and thus to divergence. For smaller values of ε, the correct state is recovered faster and infeasibil-
ity/divergence is avoided. However, for smaller values of ε a bigger (but time-wise shorter) peaking
of the observer error at the beginning occurs, see Figure 6.6, right plot. This is also evident in the
time plot of the states and inputs as shown in Figure 6.7. Notice also in the state-feedback case, for
the initial conditions shown, the input constraints are not hit, while for all output-feedback cases the
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Figure 6.7: Trajectories of z1, z2 and the input u.

NMPC controller hits the input constraints.

Figure 6.8 shows a part of the region of attraction for different values of ε = 0.03, 0.07 and 0.09 in
comparison to the state-feedback case. Note that the region of attraction for smaller values of ε always
contain the regions of attraction of the ones for bigger values of ε. The plot underpins that the region
of attraction of the output-feedback controller converges to the state-feedback one for decreasing ε.
This is in correspondence to the result of Theorem 6.1.

6.5 Summary

Deriving stabilizing output-feedback control schemes is of practical, as well as of theoretical rele-
vance. In this chapter we outlined, based on results for NMPC (Imsland, Findeisen, Bullinger, All-
göwer and Foss, 2003; Findeisen et al., 2003b; Findeisen et al., 2003d; Findeisen et al., 2003c; Find-
eisen, Imsland, Allgöwer and Foss, 2002), a semi-regional practical stability result for sampled-data
open-loop feedback. The result is not limited to a specific observer class, we rather state conditions on
the controller and observer ensuring semi-regional practical stability. As shown, a series of observer
designs satisfy the required conditions. Examples are high-gain observers, moving horizon observers
with contraction constraint, observers possessing a linear error dynamics where the poles can be arbi-
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trarily chosen, or observers achieving convergence in finite time. In the spirit of the output-feedback
results for the instantaneous case as presented in (Teel and Praly, 1995; Atassi and Khalil, 1999) it
could be argued that the derived results represent a separation principle for sampled-data open-loop
output-feedback.

In the case of NMPC the derived result have, in comparison to other output-feedback results (Scokaert
et al., 1997; Magni, De Nicolao and Scattolini, 2001a; de Oliveira Kothare and Morari, 2000), the ad-
vantage that the obtained stability is semi-regional rather then local. In comparison to (Michalska and
Mayne, 1995) which present (semi-regional) closed-loop stability results for NMPC in combination
with MHE, it is not necessary to find the global solution of a nonlinear dynamic optimization problem.

The price to pay is the local Lipschitz requirement on the value function. While for sampled-data
open-loop feedbacks based on instantaneous locally Lipschitz continuous feedbacks, this condition
is normally satisfied, in the case of sampled-data open-loop NMPC it can often not be guaranteed a
priory. Thus, future research should focus on either relaxing this condition, or deriving conditions
under which an NMPC scheme does satisfy this assumption, see for example (Grimm et al., 2004b).

The achieved results provide a theoretical basis for the in practice often applied certainty equivalence
principle.
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Chapter 7

Conclusions and Outlook

Linear model predictive control is by now one of the most widely employed advanced control tech-
niques in industry, especially for multi-variable process control applications subject to constraints on
the process variables. Steadily increasing economic and ecological demands require to operate pro-
cesses over a wide range of operating conditions and close to the boundary of safe operation. For such
processes, however, linear MPC often performs poorly, since a linear process model cannot capture
the nonlinear dynamics sufficiently well. For this reason there is a strong interest in the development
of practically applicable, reliable NMPC schemes. Even so there has been a significant progress in
the area of NMPC over the recent decades, there are still many problems that must be overcome
before a theoretically well founded, safe and reliable application of NMPC is possible in practice.
Examples are the efficient and reliable online implementation, the analysis of the inherent robustness
properties, the development of robust NMPC approaches, the compensation of delays, and the design
of output-feedback NMPC approaches.

The results derived in this thesis provide answers to some of the open questions, and they provide
methods that overcome some of the present shortcomings. The results are specifically focused on
sampled-data open-loop NMPC implementations. Sampled-data open-loop NMPC refers to NMPC
schemes, in which the optimal control problem is solved only at discrete recalculation instants, while
the resulting optimal input is applied open-loop in between.

The problems considered in this thesis can be divided into two groups. Firstly, theoretical questions
such as inherent robustness, delay compensation, nominal stability and output-feedback are consid-
ered. These questions must be addressed in order to lay a solid foundation for the practical application
of sampled-data open-loop feedback. Secondly, issues related to the efficient and reliable implemen-
tation and solution of the open-loop optimal control problem are considered. This is one of the core
elements for a practical implementation of NMPC.

With respect to the efficient solution and implementation of the occurring open-loop optimal control
problem, we provide a proof of concept that even nowadays NMPC is practically applicable from a
computational point of view. For this purpose we consider the control of a high-purity distillation
column in simulations and experiments. The derived results underpin the two key elements related to
real-time feasibility of NMPC: the application of NMPC schemes that facilitate an efficient solution
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and the use of specially tailored dynamic optimization approaches. Such a proof of concept of real-
time implementation is important for industrial practitioners. However, the derivations and performed
experiments also point to a series of open theoretical questions in the area of sampled-data open-loop
NMPC: Is it possible to guarantee stability, even though numerical approximations and computational
delays are present? Furthermore, in which sense do model-plant mismatch, external disturbances, and
state estimation errors influence the stability and performance of the closed-loop?

To provide answers to these questions, the problem of stabilization via sampled-data open-loop feed-
back is considered from a general, more abstract point of view. In a first step, a new concept of
stabilization based on admissible input generators is introduced. Briefly, admissible input generators
provide open-loop input trajectories at the recalculation instants, based on the current state informa-
tion. These input trajectories are then applied open-loop to the system until the next recalculation
instant. The advantage of the outlined perception is that it allows a unified view on the problem of
stabilization via sample-data open-loop feedback. In a second step, stability results for sampled-data
open-loop input generators are derived. The results allow the consideration of set stabilization, in-
put generators that might be discontinuous in the state, and state and input constraints. The derived
results are exemplified considering a new sampled-data open-loop feedback strategy based on the
feedforward simulation of instantaneous feedbacks. This strategy allows to adapt instantaneous, lo-
cally Lipschitz continuous state-feedbacks to the sampled-data open-loop feedback case without loss
of stability.

With respect to the practical important problem of measurement, computational, as well as commu-
nication delays, we outline how these can be taken into account in sampled-data open-loop feedback
control. The proposed approaches are based on a suitable shift of the input signal and on a feedforward
prediction of the available state information using the available model.

Based on the derived nominal stability results the question of the inherent robustness of sampled-data
open-loop feedbacks with respect to external disturbances and model-plant mismatch is considered.
It is shown that under certain continuity assumptions, sampled-data open-loop feedbacks possesses
inherent robustness properties. Of practical importance are the robustness to small input uncertain-
ties such as numerical optimization errors, the robustness to small input delays, the robustness to
measurement and state estimation errors, and the robustness to neglected fast actuator and sensor
dynamics.

The results on inherent robustness pave the way to derive stability results for the sampled-data
open-loop output-feedback problem. Specifically, for a broad class of sampled-data open-loop state-
feedback controllers, including NMPC, novel conditions on the state observer are derived guarantee-
ing that the closed-loop is semi-regionally practically stable. Even so the required conditions on the
state observer are rather stringent, a series of observer designs do satisfy them. Examples are high-
gain observers, moving horizon observers subject to contraction constraints, observers possessing a
linear error dynamics where the poles can be arbitrarily chosen, or observers achieving convergence
in finite time such as sliding mode observers.

Overall, the results in this thesis provide answers and solutions to a series of practically and the-
oretically important open questions and problems for sampled-data open-loop feedback, especially
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NMPC. The derived results, especially on nominal stability, inherent robustness and output-feedback
provide a solid theoretical basis for the application of sampled-data open-loop NMPC under practical
conditions. Notably, the majority of the derived results are not limited to sampled-data open-loop
NMPC. They rather hold for a wide class of sampled-data open-loop feedbacks.

7.1 Outlook

Several results addressed in this thesis offer the opportunity for further research.

Firstly, the derived methods and results should be validated by means of practically relevant exam-
ples. Especially, the inevitable conservatism incorporated in the developed robust results and in the
proposed approach towards output-feedback NMPC has to be examined concerning realistic applica-
tions. The technical machinery to facilitate such examinations can be based on the results of Chapter 5
and 6.

Another promising area for further research is the combination of a sampled-data open-loop input
generator and an instantaneous feedback controller tracking the corresponding open-loop trajectory
to counteract disturbances instantaneously. Such a “hybrid” control approach should in principle
increase the robustness and performance of the closed-loop significantly. Preliminary results in this
direction are outlined in (Lepore et al., 2004; Fontes and Magni, 2003).

With respect to the output-feedback problem for NMPC, it is of practical, as well as theoretical interest
to overcome the required local Lipschitz continuity of the value function. It is in general not possible
to verify the continuity requirement on the value function a priori for stabilizing MPC schemes,
especially if state constraints are present. Thus, future research might focus on either relaxing this
condition, or to derive conditions under which an NMPC scheme does satisfy this assumption.

One possible solution to overcome the local Lipschitz conditions is the direct consideration of an
estimate of the observer error in the predictive controller, i.e. the design of an NMPC controller that
explicitly accounts for the disturbance due to the state estimate. This can be addressed by set-based
observers and min-max NMPC formulations (see e.g. (Findeisen and Allgöwer, 2004b; Findeisen and
Allgöwer, 2004c)). However, there are many open questions concerning the efficient solution of the
resulting min-max problem or the specific design of the set-based observer. The advantage of such
an approach is its potential capability to stabilize systems requiring a discontinuous feedback, as for
example nonholonomic mechanical systems.
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Appendix A

Proof of Lemma 4.1

The proof is similar to the contradiction argument given in the proof of Lemma 4 in (Michalska
and Vinter, 1994) for the non set-based case, with slight modifications as used in Theorem 14.1 of
(Yoshizawa, 1966).

Proof: :
Assume the contrary. Since ‖x(·)‖L∞(0,∞) <∞ and ‖ẋ(·)‖L∞(0,∞) <∞, we know that there exist
positive constants k1, k2 such that

‖x(·)‖L∞(0,∞) ≤ k1, ‖ẋ(·)‖L∞(0,∞) ≤ k2.

Then we know that there exists a positive constant c with k1 > c > 0 and a sequence of times
{ti}i∈N, such that for i → ∞ ti → ∞, and that ‖x(ti)‖A ≥ c. We can extract from this sequence a
subsequence {t̃i}i∈N, such that for all i ∈ N:

|t̃i+1 − t̃i| >
c

2k2
.

Note that this implies that the intervals [t̃i, t̃i + c
2k2

] are disjoint. Furthermore, from ‖x‖A − ‖y‖A ≤
‖x− y‖A it follows that for t > t̃i

‖x(t̃i)‖A − ‖x(t)‖A ≤ ‖x(t̃i) − x(t)‖ =

∥
∥
∥
∥

∫ t

t̃i

ẋ(τ)dτ

∥
∥
∥
∥

≤
∫ t

t̃i

‖ẋ(τ)‖dτ.

Hence, for ti + c
2k2

> t > t̃i

‖x(t)‖A ≥ ‖x(t̃i)‖A −
∫ t

t̃i

‖ẋ(τ)‖dτ ≥ c− ck2

2k2
=

1

2
c.

From this we obtain with

d = inf{β(x)|x ∈ X , 1
2
c ≤ ‖x‖A ≤ k1},
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where d > 0 since β is positive definite with respect to the set A, that

∞ > lim
T→∞

∫ T

0

β(x(t))dt ≥ lim
N→∞

N∑

i=1

∫ t̃i+
c

2k2

t̃i

β(x(t))dt ≥ lim
N→∞

Ndc

2k2

→ ∞,

which is a contradiction with respect to our initial assumption. Thus ‖x(t)‖A → 0 as t→ ∞.
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Nes̆ić, D. and Laila, D.: 2002, A note on input-to-state stabilization for nonlinear sampled-data systems, IEEE

Trans. Aut. Control 47(7), 1153–1158.
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