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Main points

Heterogeneous cellular properties lead to a heterogeneous response
from a common stimulus

Heterogeneity formulated in terms of probability densities
May not be a simple density, nonparametric description needed

Response of non-interacting heterogeneous populations is linear!

Linear is easy
Makes analysis algorithms computationally efficient

2 / 21



Outline

1 Examples of heterogeneity in cellular signaling

2 Construction of heterogeneous signaling models

3 Simulation and analysis of heterogeneous signaling models
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Apoptosis death time distributions

Institute for Cell Biology and Immunology,
Universität Stuttgart

Observations
Cells in a clonal population
die at different times
Some cells survive
completely
Heterogeneity in protein
amounts of caspases and
death receptors observed
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Heterogeneous apoptotic signaling
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The intracellular signaling model

Single cell mathematical model as starting point:

ẋ = Sv(x ,p), x(0) = x0

Assumption: Pathway components x and structure S, v(·, ·) are
the same for all cells, but parameters p and initial state x0 may
be different.
Ensemble model for N cells indexed i , i = 1, . . . ,N:

ẋ (i) = Sv(x (i),p(i)), x (i)(0) = x (i)
0

Key assumptions / simplifications

Heterogeneity only in parameters and initial conditions

No interactions among cells
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Formulating the cellular heterogeneity

Probability density function Φ for parameter values

p

Φ

For any given cell i : p(i) ∼ Φ

Φ(p) is also the number density of cells in the population with
parameter p

Ensemble model for cell population

ẋ (i) = Sv(x (i),p(i)), x (i)(0) = x (i)
0

Prob(p(i) ∈ P, x (i)
0 ∈ X ) =

∫
P×X

Φ(x ,p)dpdx
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The response distribution

Response of individual cell y (i) is a function of the state
trajectory:

y (i) = h
(
x (i)(t ,p(i), x (i)

0 ),p(i))
Examples:

One concentration at time tk : y = xj (tk )
Time point at which a threshold is crossed:
y = inf{t : xj (t) ≥ 0.5xk (0)}

Response heterogeneity can be described by a probability
density function Ψ(y):

Prob(y (i) ∈ Y) =

∫
Y

Ψ(y)dy

Ψ(y) is also the number density of cells with response y .
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Model for heterogeneous populations

ẋ (i) = Sv(x (i),p(i))

x (i)(0) = x (i)
0

y (i) = h
(
x (i)(t),p(i)

)
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y (i) ∼ Ψ

x (i)
0 ,p(i) ∼ Φ
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Linearity of heterogeneous populations

Linearity
F (a + b) = F (a) + F (b)

ẋ (i) = Sv(x (i),p(i))

x (i)(0) = x (i)
0

y (i) = h
(
x (i)(t),p(i)

)
0.5µM
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Linearity of heterogeneous populations

Linearity
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On linearity

Reminder: No interactions among cells!

F

F (3× + 2× ) = 3× + 2×
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Formulation as partial differential equation – state
density function

Modeling approach
Probability density function Θ for extended state
(= concentrations + parameters)

Prob(x(t) ∈ X ,p ∈ P) =

∫
X×P

Θ(t , x ,p)dxdp

Resulting equation
Fokker-Planck equation with a drift term only

∂Θ(t , x ,p)

∂t
= −div(x ,p)(Sv(x ,p)Θ(t , x ,p))

Initial condition
Θ(0, x ,p) = Φ(x ,p)
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Simulating heterogeneous cell populations

ẋ (i) = Sv(x (i),p(i))

x (i)(0) = x (i)
0

y (i) = h
(
x (i)(t),p(i)

) ?

p

Φ

0.5µM

Φ

x (i), p(i)

y (i) Ψ

Parameter sampling

Numerical simulation
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ẋ (i) = Sv(x (i),p(i))

x (i)(0) = x (i)
0

y (i) = h
(
x (i)(t),p(i)

)

?

p

Φ

0.5µM

Φ

x (i), p(i)

y (i) Ψ

Parameter sampling

Numerical simulation

Density estimation

16 / 21



Density estimation of the response distribution

Histogram

Ψ(y) =
1

N(yk+1 − yk )
#{i : yk ≤ y (i) ≤ yk+1}

Naive estimator (“Sliding histogram”):

Ψ(y) =
1

Nh
#{i : y − h

2
≤ y (i) ≤ y +

h
2
}

Kernel density estimator:
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Parameter estimation from population snapshot data

ẋ (i) = Sv(x (i),p(i))

x (i)(0) = x (i)
0

y (i) = h
(
x (i)(t),p(i)

)
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Optimizing over the cellular heterogeneity

ẋ (i) = Sv(x (i),p(i))

x (i)(0) = x (i)
0

y (i) = h
(
x (i)(t),p(i)

)

Ansatz densities Φj

Estimated density
∑k

j=1 cjΦj

Ψsim
Φj

∑k
j=1 cjΨ

sim
Φj

Optimization problem:

mincj ‖Ψmeas −
∑k

j=1 cjΨ
sim
Φj
‖

Ψmeas

BMC Bioinformatics 12:125 (2011)
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Wrap-up

Heterogeneous cellular properties lead to a heterogeneous response
from a common stimulus

Heterogeneity formulated in terms of probability distributions
Simulation by parameter sampling and density estimation

Response of non-interacting heterogeneous populations is linear!

Makes repeated simulations computationally cheap
Optimizing for measured response distribution, ...?
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The big picture (again)
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