

Modeling biochemical signal transduction in heterogeneous cell populations

Steffen Waldherr, Jan Hasenauer, and Frank Allgöwer

Institute for Systems Theory and Automatic Control Universität Stuttgart

August 28, 2011

The big picture

Main points

Heterogeneous cellular properties lead to a heterogeneous response from a common stimulus

- Heterogeneity formulated in terms of probability densities
- May not be a simple density, nonparametric description needed

Response of non-interacting heterogeneous populations is linear!

- Linear is easy
- Makes analysis algorithms computationally efficient

Outline

- Examples of heterogeneity in cellular signaling
- Construction of heterogeneous signaling models
- Simulation and analysis of heterogeneous signaling models

Outline

- Examples of heterogeneity in cellular signaling
- Construction of heterogeneous signaling models
- Simulation and analysis of heterogeneous signaling models

Apoptosis death time distributions

Institute for Cell Biology and Immunology, Universität Stuttgart

Observations

- Cells in a clonal population die at different times
- Some cells survive completely
- Heterogeneity in protein amounts of caspases and death receptors observed

Heterogeneous apoptotic signaling

Outline

- Examples of heterogeneity in cellular signaling
- Construction of heterogeneous signaling models
- Simulation and analysis of heterogeneous signaling models

The intracellular signaling model

Single cell mathematical model as starting point:

$$\dot{x} = Sv(x, p), \qquad x(0) = x_0$$

- **Assumption:** Pathway components x and structure S, $v(\cdot, \cdot)$ are the same for all cells, but parameters p and initial state x_0 may be different.
- Ensemble model for N cells indexed i, i = 1, ..., N:

$$\dot{x}^{(i)} = Sv(x^{(i)}, p^{(i)}), \qquad x^{(i)}(0) = x_0^{(i)}$$

Key assumptions / simplifications

- Heterogeneity only in parameters and initial conditions
- No interactions among cells

Formulating the cellular heterogeneity

Probability density function Φ for parameter values

- For any given cell $i: p^{(i)} \sim \Phi$
- $\Phi(p)$ is also the number density of cells in the population with parameter p

Ensemble model for cell population

$$\dot{x}^{(i)} = \mathbf{S}v(x^{(i)}, \mathbf{p}^{(i)}), \qquad x^{(i)}(0) = x_0^{(i)}$$

$$\operatorname{Prob}(\mathbf{p}^{(i)} \in \mathcal{P}, x_0^{(i)} \in \mathcal{X}) = \int_{\mathcal{P} \times \mathcal{X}} \Phi(x, p) dp dx$$

The response distribution

• Response of individual cell $y^{(i)}$ is a function of the state trajectory:

$$y^{(i)} = h(x^{(i)}(t, p^{(i)}, x_0^{(i)}), p^{(i)})$$

- Examples:
 - One concentration at time t_k : $y = x_i(t_k)$
 - Time point at which a threshold is crossed: $y = \inf\{t : x_j(t) \ge 0.5x_k(0)\}$
- Response heterogeneity can be described by a probability density function Ψ(y):

$$\operatorname{Prob}(y^{(i)} \in \mathcal{Y}) = \int_{\mathcal{Y}} \Psi(y) dy$$

• $\Psi(y)$ is also the number density of cells with response y.

Model for heterogeneous populations

$$F(a+b) = F(a) + F(b)$$

$$F(a+b) = F(a) + F(b)$$

$$F(a+b) = F(a) + F(b)$$

$$F(a+b) = F(a) + F(b)$$

On linearity

• Reminder: No interactions among cells!

On linearity

• Reminder: No interactions among cells!

On linearity

Reminder: No interactions among cells!

$$F(3 \times 4 + 2 \times 1) = 3 \times 1 + 2 \times 4$$

Formulation as partial differential equation – state density function

Modeling approach

Probability density function Θ for extended state
 (= concentrations + parameters)

$$\operatorname{Prob}(x(t) \in \mathcal{X}, p \in \mathcal{P}) = \int_{\mathcal{X} \times \mathcal{P}} \Theta(t, x, p) dx dp$$

Resulting equation

Fokker-Planck equation with a drift term only

$$\frac{\partial \Theta(t,x,p)}{\partial t} = -\text{div}_{(x,p)}(Sv(x,p)\Theta(t,x,p))$$

Initial condition

$$\Theta(0, x, p) = \Phi(x, p)$$

Outline

- Examples of heterogeneity in cellular signaling
- Construction of heterogeneous signaling models
- Simulation and analysis of heterogeneous signaling models

Simulating heterogeneous cell populations

Simulating heterogeneous cell populations

Density estimation of the response distribution

Histogram

$$\Psi(y) = \frac{1}{N(y_{k+1} - y_k)} \#\{i : y_k \le y^{(i)} \le y_{k+1}\}$$

Naive estimator ("Sliding histogram"):

$$\Psi(y) = \frac{1}{Nh} \# \{i : y - \frac{h}{2} \le y^{(i)} \le y + \frac{h}{2} \}$$

Kernel density estimator:

$$\Psi(y) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{K}_{y^{(i)}}(y)$$

Parameter estimation from population snapshot data

Optimizing over the cellular heterogeneity

BMC Bioinformatics 12:125 (2011)

Optimizing over the cellular heterogeneity

BMC Bioinformatics 12:125 (2011)

Wrap-up

Heterogeneous cellular properties lead to a heterogeneous response from a common stimulus

- Heterogeneity formulated in terms of probability distributions
- Simulation by parameter sampling and density estimation

Response of non-interacting heterogeneous populations is **linear!**

- Makes repeated simulations computationally cheap
- Optimizing for measured response distribution, ...?

The big picture (again)

