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Robustness analysis

Informal definition of robustness
Robustness is a property that allows a system to maintain its function in the
presence of internal and external perturbations.

H. Kitano, 2004

System / Model: ẋ = Sv(x)

x ∈ Rn: amounts of signalling molecules
v(x) ∈ Rm: reaction rates
S ∈ Rn×m: stoichiometric matrix

Perturbations: kinetic perturbations (changes in reaction kinetics v )
Function: Qualitative dynamical behaviour (stability, oscillations, ...)

Robustness analysis with kinetic perturbations, S. Waldherr 1 / 26



Formal robustness measures

robust perturbations

Smallest non-robust
perturbation in ∞-
norm

loss of function

nominal point

Non-robust perturbation = any deviation from the nominal point for
which the system looses functionality
Robustness measure = smallest norm of non-robust perturbations
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Why robustness analysis?

Robustness analysis for model evaluation
Biological systems are robust↔ models should be robust!
Find parts of the system which need to be modelled carefully
Evaluate effects of uncertainty on model predictions

Robustness analysis for system understanding
Understand mechanisms which confer robustness to biological systems
Detect fragile points, e.g. for medical intervention
Guide system design in bioengineering and synthetic biology
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Kinetic perturbations – the basic idea

Kinetic perturbations = reaction rate perturbations
nominal rates v(x) to perturbed rates ṽ(x)

⇒ nominal model ẋ = Sv(x) to perturbed model ẋ = Sṽ(x)

Consider nominal steady state x0: Sv(x0) = 0
Kinetic perturbation, if ṽ(x0) = v(x0)

Reaction rates in steady state unperturbed, but reaction rate slopes
may vary:

x

v(x)

1 2

1

v(x) = 0.7x

ṽ(x), increased slope

ṽ(x), reduced slope

x0 = 1
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Formal definition of kinetic perturbations

Definition
The network ẋ = Sṽ(x) is said to be a kinetic perturbation of the nominal
network ẋ = Sv(x) at x0 ∈ Rn with Sv(x0) = 0, if ṽ(x0) = v(x0) =: v0.

Consider the reaction rate Jacobian V = ∂v
∂x

For the perturbed network, we have

Ṽ (x0) =
∂ṽ
∂x

(x0) = V (x0) + ∆̄

Local effects of the kinetic perturbation are determined by ∆̄

Scaled perturbation ∆i` =
x0,`
v0,i

∆̄i`

‖∆‖ is a measure for the perturbation size

Steady state concentration x0 and flux v0 are unperturbed

Steady state reaction slopes V (x0) are perturbed by ∆̄
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Mapping kinetic perturbations to parameter changes

Considering generalised mass action (GMA) networks
GMA reaction rate: vi (x) = ki

∏n
`=1 xαi`

`

αi` > 0: x` is a substrate for / activates vi

αi` < 0: x` inhibits vi

Non-integer kinetic orders αi`

Effect of constrained diffusion (fractal reaction kinetics)
Result of model simplifications (as in S-systems, Savageau et al.)

Perturbed reaction rate ṽi (x) = k̃i
∏n
`=1 x α̃i`

`

Kinetic perturbation
∂ṽi
∂x`

= ∂vi
∂x`

+
v0,i
x0,`

∆i`
⇔

Parameter change

α̃i` = αi` + ∆i`

k̃i = ki

n∏
`=1

x−∆i`
0,`
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Biochemical interpretation of kinetic perturbations

Are kinetic perturbations biochemically plausible?

Yes, because kinetic perturbations map to parameter variations in
reasonable model classes for intracellular networks such as

GMA networks
enzymatic networks (Michaelis-Menten or Hill reaction kinetics)
genetic networks (sigmoidal activation & inhibition functions)

Biochemical interpretation
Positive ∆i`: more cooperativity in reaction i with respect to species `
Negative ∆i`: increase saturation in reaction i with respect to species `
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Inducing bifurcations by kinetic perturbations

Example “network”

X v2v1

v1 = kx2

1+Mx2 ẋ = v1 − v2

v2 = x

x

v(x)

1 2

1

v2

v1

ṽ1
ṽ1

x0 = 1

∂ṽ1
∂x (1) = ∂v1

∂x (1) + ∆̄

∆̄ = 0: x0 stable
∆̄ = ∆̄∗: transcritical bifurcation at x0

∆̄ > ∆̄∗: x0 unstable

Loss of bistability by a kinetic perturbation
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ṽ1

ṽ1
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Robustness with respect to kinetic perturbations

Perturbed Jacobian
Ã(∆) = A + S(diag v0)∆(diag x0)−1

Robustness radius for kinetic perturbations
Robustness measure = size of smallest perturbation such that Ã(∆)
has an eigenvalue on the imaginary axis

ψ = inf
{
‖∆‖ | det(jωI − Ã(∆)) = 0

}
Can be formulated as structured singular value (µ) problem with

G(jω) = (diag x0)−1(jωI − A)−1S(diag v0)

Result: ψ =
(

sup
ω
µ∆G(jω)

)−1

G(jω)

∆

Robustness problem can be solved with standard µ analysis tools.
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Robustness radius for scalar perturbations

Perturbation of a single interaction: Species ` on reaction i

∆̄ =



0
...
1
...
0

∆̄i`(0 . . . 1 . . . 0) = ei ∆̄i`eT
`

Perturbed Jacobian Ã(∆i`) = A + Seiv0,i ∆i`x−1
0,` eT

`

Robustness radius

ψ =
{
|∆i`| | det(jωI − Ã(∆i`)) = 0

}
=
(

sup
ω∈R(G`i )

|G`i (jω)|
)−1 Re

Im

G`i(jω)

1
ψ

µ–problem with G`i (jω) = eT
`x−1

0,` (jωI − A)−1Sv0,iei

Explicit formula for the robustness radius

Allows to detect fragile interactions in the network
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Robustness analysis in the vector case

Perturbation of several interactions either
from one species ` to several reactions Eiv or
from several species E`x to one reaction i .

∆̄ = Ei ∆̄i`eT
`

Perturbed Jacobian Ã(∆i`) = A + SEi diag(Eiv0)∆i`x−1
0,` eT

`

Robustness analysis in the vector case
Results depend on the norm that is chosen:

1-norm or∞-norm: robustness radius from a linear program
2-norm: explicit formula for robustness radius

Also requires to compute a supremum over ω.
Non-robust perturbation is the solution of an affine equation M∆̄ = b.
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The MAPK cascade

E2

INPUT (E1)

MAPKKK MAPKKK*

MAPKK P’ase

MAPKK−PMAPKK MAPKK−PP

MAPK MAPK−P MAPK−PP

MAPK P’ase

OUTPUT

Huang & Ferrell 1996

Step response for MAPKpp

time [min]

M
A

P
K

pp
[µ

M
]

200 400 600

0.1

0.2

Medium scale network with 22 species and 30 (irreversible) reactions

Where to perturb this network in order to get oscillations?
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Single interaction analysis of the MAPK cascade

Checking all 660 network interactions for a scalar kinetic perturbation to
induce oscillations
Found 8 fragile interactions (|∆∗| < 1), e.g.:

E2

INPUT (E1)

MAPKKK MAPKKK*

MAPKK P’ase

MAPKK−PMAPKK MAPKK−PP

MAPK MAPK−P MAPK−PP

MAPK P’ase

OUTPUT

Negative feedback from
MAPKpp to MAPKK
phosphorylation
Positive feedback from
MAPKpp to catalysis of
MAPK / MAPKKpp
complex
Saturated catalysis of
MAPKpp / Phosphatase
complex
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Effect of a kinetic perturbation on the dynamics

MAPK
K-P’ase

MAPK K-P’ase+
PP

P
v30

Critical perturbation ∆∗ = −0.76

substrate

v30

0.025µM

4 µM
min

∆ = 0

∆ = −0.4∆ = −0.4

∆ = −0.8

x0

time [min]

M
A

P
K

pp
[µ

M
]

200 400 600

0.4

0.8

Robustness analysis with kinetic perturbations, S. Waldherr 17 / 26



Effect of a kinetic perturbation on the dynamics

MAPK
K-P’ase

MAPK K-P’ase+
PP

P
v30

Critical perturbation ∆∗ = −0.76

substrate

v30

0.025µM

4 µM
min

∆ = 0

∆ = −0.4

∆ = −0.4

∆ = −0.8

x0

time [min]

M
A

P
K

pp
[µ

M
]

200 400 600

0.4

0.8

Robustness analysis with kinetic perturbations, S. Waldherr 17 / 26



Effect of a kinetic perturbation on the dynamics

MAPK
K-P’ase

MAPK K-P’ase+
PP

P
v30

Critical perturbation ∆∗ = −0.76

substrate

v30

0.025µM

4 µM
min

∆ = 0

∆ = −0.4

∆ = −0.4

∆ = −0.8
x0

time [min]

M
A

P
K

pp
[µ

M
]

200 400 600

0.4

0.8

Robustness analysis with kinetic perturbations, S. Waldherr 17 / 26



Outline

1 Theory of kinetic perturbations

2 Robustness analysis with kinetic perturbations

3 Adaptation with kinetic perturbations
Properties of biomolecular adaptation
Achieving adaptation with kinetic perturbations
Example: Adaptation in the MAPK cascade

Robustness analysis with kinetic perturbations, S. Waldherr 18 / 26



Definition of adaptation

1. Adaptation
A dynamical system u 7→ y is said
to adapt, if persistent changes in u
do lead to transient, but not
persistent changes in y .

Stimulus

Response

Time

Local adaptation = consider only infinitesimally small changes in u

2. Local adaptation without transient response
The system u 7→ y is said to perfectly adapt locally at (u0, y0), if

lim
us→0

limt→∞(y(t ,u0 + ush(t))− y0)

us
= 0.
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Adaptation and robustness

Adaptation to a slowly changing
perturbation

=

Robustness of steady state
concentration to this perturbation

Perturbation

Response

Time

Slowly changing perturbations in biology
Protein amounts due to stochastic gene expression
Environmental conditions such as light, temperature, or nutrient
availability
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Conditions for adaptation

1. Linear approximation at steady state

ḋx = Adx + Bdu
dy = Cdx ,

with: A = S
∂v
∂x

(x0,u0)

B = S
∂v
∂u

(x0,u0)

2. Tranformation to frequency domain

dy(s) = C(sI − A)−1Bdu(s) = G(s)du(s).

3. Necessary and sufficient condition for local adaptation
By the final value theorem of the Laplace transformation:

local adaptation ⇔ G(0) = 0 A invertible⇔ det
(

A B
C 0

)
= 0

Last condition is affected by kinetic perturbations!
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Achieving adaptation with kinetic perturbations

Effect of kinetic perturbation on adaptation condition
Perturbation of Jacobian due to a kinetic perturbation `→ i :

Ã = A + Seiv0,i ∆i`(x0,`)
−1eT

`

Adaptation as goal:

det
(

Ã B
C 0

)
= det

(
A + Seiv0,i ∆i`(x0,`)

−1eT
` B

C 0

)
= 0.

Compute a critical kinetic perturbation

∆∗i` = (−eT
j MoutM−1

0 Mine`)−1 x0,`

v0,i

with
M0 =

(
A B
C 0

)
Min =

(
I
0

)
S Mout =

(
I 0

)
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Example: Adaptation in the MAPK cascade

Goal: achieve adaptation of nuclear MAPKpp

E1

KKK KKKp

E2
KK KKp KKpp

KKPase
K Kp Kpp

KPase

Kpp

u

y

cytosol

nucleus

Huang-Ferrell MAPK
cascade model as
before
Added an input by
controlling E1
production

Result of analysis with kinetic perturbations
No adaptation with transient response possible through kinetic
perturbations
Network lacks a feedback or feedforward loop
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Adaptation in an extended MAPK cascade model

Model feedback extension

E1

KKK KKKp

E2
KK KKp KKpp

KKPase
K Kp Kpp

KPase

KppRP-gene

TC

RP-mRNA

RP IC

u

y

cytosol

nucleus

Added a protein
genetically regulated
by MAPK
Feedback by formation
of inhibitory complex

Candidate interactions for adaptation
Found five candidate interactions in newly added feedback loop for
adaptation via kinetic perturbations.
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Response of original and perturbed networks

Adaptation achieved even for large stimulus changes.
Non-linear dynamics depend on which interaction is targeted.
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Conclusions

Kinetic perturbations
Perturbation class suited for biochemical network analysis
Kinetic perturbations = reaction rate slope changes at steady state
Biochemically plausible for GMA / enzymatic / genetic networks

Robustness analysis with kinetic perturbations
Efficient robustness analysis via µ–analysis methods
Results indicate fragile network interactions
Non-robust perturbations are explicitly computed

Adaptation with kinetic perturbations
Find network modifications to achieve perfect local adaptation
Steady state is kept unperturbed intrinsically
Adaptation even to large stimulus changes in many cases
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