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Biological mechanisms of cellular coupling

@ Intracellular dynamics of communication molecules
(autoinducers)

@ Exchange of autoinducers via a joint chemical medium

Illustration of the autoinducer mechanism




From bistability in single cells to population bistability?

Bistable genetic switches in a single cell

—
'l: Switching triggered by extrinsic
perturbations

Desynchronized _ o
population Synchronized switching in

populations?
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0 Modeling formalism
@ Synchronized bistability in cell populations

e Example: an autoregulatory gene switch
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Preliminaries for the modeling

Simplifying assumptions
@ Homogeneous intracellular dynamics.
@ All cells have equal volume.

© The volume of the extracellular medium is proportional to the
number of cells.

© All molecular species are exchanged by diffusion.

Assumptions 1-3 can be relaxed to come to the same conclusion, but lead to a more
complicated model.

Definitions

¢ ¢ R” —molecular concentrations in the medium
¢0) ¢ R" —molecular concentrations in the i-th cell
N — number of cells
V. —volume of a cell



Modeling a coupled cell population

Dynamics in extracellular medium:
Nk
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Intracellular dynamics:
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Terms
F(£")) —intracellular dynamics
k€@ — extracellular decay / dilution
160 — ¢©) — diffusive exchange rate



Transformation to the singular perturbation form
Determination of a small parameter
@ Assumption of fast diffusive exchange: large value for k.
@ Small parameter k; ' = ¢

Key step: Separation into slow and fast variables
@ Candidate slow variable: Averaged concentration
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Dynamics of the transformed system
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Singular perturbation: The quasi-steady state
Dynamics of the fast variables
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For the quasi-steady state, we need to solve the equations

Unique quasi-steady state solution
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Lemma

The matrix Ey = 51+ /€ RY*N where 1is a N x N matrix of all ones, has one
eigenvalue at 2 and N — 1 eigenvalues at 1.



Singular perturbation: Fast and slow dynamics

Fast dynamics: the boundary layer model
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Key conclusion
The fast dynamics exponentially approach the quasi-steady state.

Slow dynamics: the long timescale approximation
. X X

Singular perturbation result

The population dynamics of order Nn are well approximated by the
slow dynamics of order nin a time range O(¢) < t < O(1).



Synchronized bistability

. X X
Main result

Multistability of the slow dynamics implies synchronized multistability
of the cell population.

Proposition: If
@ Fis globally Lipschitz,

© a Lyapunov condition is satisfied around an equilibrium of the
slow dynamics,

© the slow variable xj starts in the corresponding neighbourhood
of the equilibrium,

then all cells in the population converge to an e-neighborhood of this
equilibrium.

Conditions 1-2 are satisfied for typical multistable intracellular networks.



Outline

e Example: an autoregulatory gene switch



Intracellular dynamics of an autoregulatory switch

Bistable model with one intracellular component
3¢2
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lllustration of steady state behavior
F(¢)

Unstable steady state

|

Stlable steady states




Dynamics of coupled switches
Slow dynamics: ¢() = x/2

3x2

k= F(3) =

Population-level steady state behavior
F(x/2)
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single cell

population

Bistable with same steady states 5@ = % as in the single cell.



Coupled switches: simulation results

Convergence to the “off” Convergence to the “on”
state state

@ Decoupled switches for large ¢
@ Synchronized switches for small ¢



Discussion of biological implications

Occurence of multistable cellular switches
@ Differentiation decisions in multicellular organisms

@ Generating start signals for cellular programs (cell death, cell
cycle, ...)

@ Phenotype variations in bacterial populations

Biological relevance of synchronized switching
@ Advantages of stochastic heterogeneity within a population.

o Tissue differentiation requires coordinated switching of many
cells.

@ Increased robustness of tissue differentiation by synchronized
switching?

@ Engineering a population of synchronously switching cells.



Conclusions

Synchronized bistability in coupled cells under fast diffusive
coupling.

@ Biophysical model for a cellular network with diffusive coupling.
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@ Used a singular perturbation approach to establish sufficient
conditions for synchronized switching.

. X X
X = F(E) 7kd§

@ Biological implications in tissue differentiation and synthetic
biology.
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