Network-level dynamics of diffusively coupled cells

Steffen Waldherr¹ and Frank Allgöwer²

¹MATHEON Research Center Free University Berlin

²Institute for Systems Theory and Automatic Control University of Stuttgart

51st IEEE Conference on Decision and Control December 12, 2012

Biological mechanisms of cellular coupling

- Intracellular dynamics of communication molecules (autoinducers)
- Exchange of autoinducers via a joint chemical medium

Illustration of the autoinducer mechanism

From bistability in single cells to population bistability?

Bistable genetic switches in a single cell

Switching triggered by extrinsic perturbations

Desynchronized population

Synchronized switching in populations?

- Modeling formalism
- Synchronized bistability in cell populations
- 3 Example: an autoregulatory gene switch

- Modeling formalism
- Synchronized bistability in cell populations
- 3 Example: an autoregulatory gene switch

Preliminaries for the modeling

Simplifying assumptions

- Homogeneous intracellular dynamics.
- All cells have equal volume.
- The volume of the extracellular medium is proportional to the number of cells.
- All molecular species are exchanged by diffusion.

Assumptions 1–3 can be relaxed to come to the same conclusion, but lead to a more complicated model.

Definitions

```
\xi^{(0)} \in \mathbb{R}^n – molecular concentrations in the medium
```

$$\xi^{(i)} \in \mathbb{R}^n$$
 – molecular concentrations in the *i*-th cell

N – number of cells

 V_c – volume of a cell

Modeling a coupled cell population

Dynamics in extracellular medium:

$$\dot{\xi}^{(0)} = -k_d \xi^{(0)} + \sum_{j=1}^{N} \frac{k_c}{N V_c} (\xi^{(j)} - \xi^{(0)})$$

Intracellular dynamics:

$$\dot{\xi}^{(i)} = F(\xi^{(i)}) - \frac{k_c}{V_c}(\xi^{(i)} - \xi^{(0)}), \quad i = 1, \dots, N.$$

Terms

$$F(\xi^{(i)})$$
 – intracellular dynamics $k_d \xi^{(0)}$ – extracellular decay / dilution $\frac{k_c}{V_c}(\xi^{(i)}-\xi^{(0)})$ – diffusive exchange rate

Transformation to the singular perturbation form

Determination of a small parameter

- **Assumption** of fast diffusive exchange: large value for k_c
- Small parameter $k_c^{-1} = \varepsilon$

Key step: Separation into slow and fast variables

• Candidate slow variable: Averaged concentration

$$x = \xi^{(0)} + \frac{1}{N} \sum_{i=1}^{N} \xi^{(i)}$$

Dynamics of the transformed system

$$\dot{x} = -k_d(x - \frac{1}{N} \sum_{j=1}^{N} z^{(j)}) + \frac{1}{N} \sum_{j=1}^{N} F(z^{(j)})$$
$$k_c^{-1} \dot{z}^{(i)} = k_c^{-1} F(z^{(i)}) - \frac{1}{V_c} (z^{(i)} - x + \frac{1}{N} \sum_{j=1}^{N} z^{(j)}),$$

- Modeling formalism
- Synchronized bistability in cell populations
- Example: an autoregulatory gene switch

Singular perturbation: The quasi-steady state Dynamics of the fast variables

$$\varepsilon \dot{z}^{(i)} = \varepsilon F(z^{(i)}) - \frac{1}{V_c} (z^{(i)} - x + \frac{1}{N} \sum_{i=1}^{N} z^{(i)}),$$

For the quasi-steady state, we need to solve the equations

$$z^{(i)} - x + \frac{1}{N} \sum_{i=1}^{N} z^{(i)} = 0, \quad i = 1, ..., N.$$

Unique quasi-steady state solution

$$z^{(i)}=\frac{x}{2}$$

Lemma

The matrix $E_N = \frac{1}{N} \mathbf{1} + I \in \mathbb{R}^{N \times N}$, where $\mathbf{1}$ is a $N \times N$ matrix of all ones, has one eigenvalue at 2 and N-1 eigenvalues at 1.

Singular perturbation: Fast and slow dynamics

Fast dynamics: the boundary layer model

$$\frac{dy^{(i)}}{d\tau} = -\frac{1}{V_c}(y^{(i)} + \frac{1}{N}\sum_{j=1}^N y^{(j)})$$

Key conclusion

The fast dynamics exponentially approach the quasi-steady state.

Slow dynamics: the long timescale approximation

$$\dot{x} = F\left(\frac{x}{2}\right) - k_d \frac{x}{2}$$

Singular perturbation result

The population dynamics of order Nn are well approximated by the slow dynamics of order n in a time range $\mathcal{O}(\varepsilon) \leq t \leq \mathcal{O}(1)$.

Synchronized bistability

$$\dot{x} = F\left(\frac{x}{2}\right) - k_d \frac{x}{2}.$$

Main result

Multistability of the slow dynamics implies synchronized multistability of the cell population.

Proposition: If

- F is globally Lipschitz,
- a Lyapunov condition is satisfied around an equilibrium of the slow dynamics,
- \odot the slow variable x_0 starts in the corresponding neighbourhood of the equilibrium,

then all cells in the population converge to an ε -neighborhood of this equilibrium.

Conditions 1–2 are satisfied for typical multistable intracellular networks.

- Modeling formalism
- Synchronized bistability in cell populations
- 3 Example: an autoregulatory gene switch

Intracellular dynamics of an autoregulatory switch

Bistable model with one intracellular component

$$\dot{\xi} = F(\xi) = \frac{3\xi^2}{1+\xi^2} - \xi$$

Illustration of steady state behavior

Dynamics of coupled switches

Slow dynamics: $\xi^{(i)} = x/2$

$$\dot{x} = F(\frac{x}{2}) = \frac{3x^2}{4 + x^2} - \frac{x}{2}$$

Population-level steady state behavior

Bistable with same steady states $\xi_s^{(i)} = \frac{x_s}{2}$ as in the single cell.

Coupled switches: simulation results

Convergence to the "off" state

Convergence to the "on" state

- Decoupled switches for large ε
- \bullet Synchronized switches for small ε

Discussion of biological implications

Occurence of multistable cellular switches

- Differentiation decisions in multicellular organisms
- Generating start signals for cellular programs (cell death, cell cycle, ...)
- Phenotype variations in bacterial populations

Biological relevance of synchronized switching

- Advantages of stochastic heterogeneity within a population.
- Tissue differentiation requires coordinated switching of many cells.
- Increased robustness of tissue differentiation by synchronized switching?
- Engineering a population of synchronously switching cells.

Conclusions

Synchronized bistability in coupled cells under fast diffusive coupling.

Biophysical model for a cellular network with diffusive coupling.

$$\dot{\xi}^{(0)} = -k_d \xi^{(0)} + \sum_{j=1}^{N} \frac{k_c}{NV_c} (\xi^{(j)} - \xi^{(0)})
\dot{\xi}^{(i)} = F(\xi^{(i)}) - \frac{k_c}{V_c} (\xi^{(i)} - \xi^{(0)}), \quad i = 1, \dots, N.$$

 Used a singular perturbation approach to establish sufficient conditions for synchronized switching.

$$\dot{x} = F\left(\frac{x}{2}\right) - k_d \frac{x}{2}$$

 Biological implications in tissue differentiation and synthetic biology.