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Biological mechanisms of cellular coupling

Intracellular dynamics of communication molecules
(autoinducers)
Exchange of autoinducers via a joint chemical medium

Illustration of the autoinducer mechanism



From bistability in single cells to population bistability?

Bistable genetic switches in a single cell

Switching triggered by extrinsic
perturbations

Desynchronized
population Synchronized switching in

populations?
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Preliminaries for the modeling

Simplifying assumptions
1 Homogeneous intracellular dynamics.
2 All cells have equal volume.
3 The volume of the extracellular medium is proportional to the

number of cells.
4 All molecular species are exchanged by diffusion.

Assumptions 1–3 can be relaxed to come to the same conclusion, but lead to a more
complicated model.

Definitions
ξ(0) ∈ Rn – molecular concentrations in the medium
ξ(i) ∈ Rn – molecular concentrations in the i-th cell

N – number of cells
Vc – volume of a cell



Modeling a coupled cell population

Dynamics in extracellular medium:

ξ̇(0) = −kdξ
(0) +

N∑
j=1

kc

NVc
(ξ(j) − ξ(0))

Intracellular dynamics:

ξ̇(i) = F (ξ(i))− kc

Vc
(ξ(i) − ξ(0)), i = 1, . . . ,N.

Terms
F (ξ(i)) – intracellular dynamics
kdξ

(0) – extracellular decay / dilution
kc
Vc
(ξ(i) − ξ(0)) – diffusive exchange rate



Transformation to the singular perturbation form
Determination of a small parameter

Assumption of fast diffusive exchange: large value for kc

Small parameter k−1
c = ε

Key step: Separation into slow and fast variables
Candidate slow variable: Averaged concentration

x = ξ(0) +
1
N

N∑
j=1

ξ(j)

Dynamics of the transformed system

ẋ = −kd (x −
1
N

N∑
j=1

z(j)) +
1
N

N∑
j=1

F (z(j))

k−1
c ż(i) = k−1

c F (z(i))− 1
Vc

(
z(i) − x +

1
N

N∑
j=1

z(j)),
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Singular perturbation: The quasi-steady state
Dynamics of the fast variables

εż(i) = εF (z(i))− 1
Vc

(
z(i) − x +

1
N

N∑
j=1

z(j)),
For the quasi-steady state, we need to solve the equations

z(i) − x +
1
N

N∑
j=1

z(j) = 0, i = 1, . . . ,N.

Unique quasi-steady state solution

z(i) =
x
2

Lemma
The matrix EN = 1

N 1 + I ∈ RN×N , where 1 is a N × N matrix of all ones, has one
eigenvalue at 2 and N − 1 eigenvalues at 1.



Singular perturbation: Fast and slow dynamics

Fast dynamics: the boundary layer model

dy (i)

dτ
= − 1

Vc
(y (i) +

1
N

N∑
j=1

y (j))

Key conclusion
The fast dynamics exponentially approach the quasi-steady state.

Slow dynamics: the long timescale approximation

ẋ = F
(x

2
)
− kd

x
2

Singular perturbation result
The population dynamics of order Nn are well approximated by the
slow dynamics of order n in a time range O(ε) ≤ t ≤ O(1).



Synchronized bistability

ẋ = F
(x

2
)
− kd

x
2
.

Main result
Multistability of the slow dynamics implies synchronized multistability
of the cell population.

Proposition: If
1 F is globally Lipschitz,
2 a Lyapunov condition is satisfied around an equilibrium of the

slow dynamics,
3 the slow variable x0 starts in the corresponding neighbourhood

of the equilibrium,

then all cells in the population converge to an ε-neighborhood of this
equilibrium.

Conditions 1–2 are satisfied for typical multistable intracellular networks.
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Intracellular dynamics of an autoregulatory switch

Bistable model with one intracellular component

ξ̇ = F (ξ) =
3ξ2

1 + ξ2 − ξ

Illustration of steady state behavior

F (ξ)

ξ

Unstable steady state

Stable steady states



Dynamics of coupled switches
Slow dynamics: ξ(i) = x/2

ẋ = F (
x
2
) =

3x2

4 + x2 −
x
2

Population-level steady state behavior

F (x/2)

x

single cell population

Bistable with same steady states ξ(i)s = xs
2 as in the single cell.



Coupled switches: simulation results

Convergence to the “off”
state

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

ε = 0
ε = 0.2
ε = 10

Time

ξ(
i)

Convergence to the “on”
state

0 2 4 6 8 10 12 14
0

1

2

3

4

ε = 0
ε = 0.2
ε = 20

Time

ξ(
i)

Decoupled switches for large ε
Synchronized switches for small ε



Discussion of biological implications

Occurence of multistable cellular switches
Differentiation decisions in multicellular organisms
Generating start signals for cellular programs (cell death, cell
cycle, ...)
Phenotype variations in bacterial populations

Biological relevance of synchronized switching
Advantages of stochastic heterogeneity within a population.
Tissue differentiation requires coordinated switching of many
cells.
Increased robustness of tissue differentiation by synchronized
switching?
Engineering a population of synchronously switching cells.



Conclusions

Synchronized bistability in coupled cells under fast diffusive
coupling.

Biophysical model for a cellular network with diffusive coupling.

ξ̇(0) = −kdξ
(0) +

N∑
j=1

kc

NVc
(ξ(j) − ξ(0))

ξ̇(i) = F (ξ(i))−
kc

Vc
(ξ(i) − ξ(0)), i = 1, . . . ,N.

Used a singular perturbation approach to establish sufficient
conditions for synchronized switching.

ẋ = F
( x

2

)
− kd

x
2

Biological implications in tissue differentiation and synthetic
biology.
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