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Abstract Apoptosis is an important physiological process which enables organisms to remove un-
wanted or damaged cells. A mathematical model of the extrinsic pro-apoptotic signaling pathway has
been introduced by Eissing et al [6] and a bistable behavior with a stable death state and a stable life
state of the reaction system has been established.
In this paper, we consider a spatial extension of the extrinsic pro-apoptotic signaling pathway incor-
porating diffusion terms and make a model-based, numerical analysis of the apoptotic switch in the
spatial dimension. For the parameter regimes under consideration it turns out that for this model dif-
fusion homogenizes rapidly the concentrations which afterward are governed by the original reaction
system. The activation of effector-caspase 3 depends on the space averaged initial concentration of
pro-caspase 8 and pro-caspase 3 at the beginning of the process.
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1 Introduction

Apoptosis is a common form of programmed cellular death and represents an important physiological
process in multicellular organisms allowing the removal of unneeded, damaged or infected cells [4,
20]. Apoptosis can be induced by different stimuli to activate the extrinsic or the intrinsic pathway.
The extrinsic pathway is initiated by activation of so-called death receptors, located in the plasma
membrane, through binding of their respective death ligands [4, 8]. The intrinsic pathway is activated
by cellular damage caused by e.g. ultraviolet irradiation at the DNA level or by toxic agents, which
can lead to activation of the protein p53 and subsequent induction of apoptosis via the mitochondrion
[8].

Both the extrinsic and the intrinsic pathways converge at the level of the caspase cascade, a network
of specific proteases, the caspases, that is commonly recognized as the central and executing machinery
of apoptosis [8, 19]. In apoptosis induction, two major types of caspases are distinguished: the initiator
caspases, which get activated through cleavage for example in the death inducing signaling complex
(DISC) of activated death receptors, and the effector caspases, which cleave multiple essential proteins
thereby dismantling the cell [4, 19]. According to the current view, the point of no return is reached
and the cell is irreversibly committed to die at a certain percentage of effector caspase activation. This
percentage might be highly dependent of the particular cell type.

The relevance of the caspase cascade for apoptosis induction and execution has stimulated the
development of mathematical models in order to better understand regulation of cell death. Early
models formulated the activation of the caspase cascade via the extrinsic pathway [1, 5, 7]. Later
models also considered the intrinsic pathway and its activation of the caspase cascade [17]. Especially
through the analysis done in [5], using a minimized model of the cascade, it became apparent that
bistability is a useful concept in order to combine fast caspase activation kinetics with tolerance towards
a minute initiator caspase activation [13].

Bistability of the caspase cascade is essentially based on a positive feedback between initiator and
effector caspases, in the sense that not only initiator caspases can cleave and activate effector caspases,
but also vice versa. Properties of bistability of the caspase cascade and the underlying mechanisms
were further analyzed in more simplistic models [6]. As one of their main conclusions, Eissing et al.
find that model variants with cooperativity in caspase activation, binding of caspase 3 to an inhibitor,
or zero-order ultrasensitivity in caspase degradation are similarly able to generate bistability, [6].

Recently, the spatial organization of caspase activation within cells has gained increased interest.
While the switch-like behavior of effector caspase activation is well established for single cells in the
dimension of time, this property is less clear in the spatial dimensions. In a first approach to investigate
this issue, the organization of mitochondrial membrane permeabilization, a crucial initiating event in
the intrinsic pathway of apoptosis, was studied [18]. In this study, the authors observed that mitochon-
drial membrane permeabilization occurs in a spatial wave within the cell. In a later study from the
same group, it was additionally shown that caspase activation proceeds very quickly through the cell,
apparently rendering the caspase substrate cleavage practically spatially homogeneous with respect to
the relevant timescale [11]. These studies support the idea that caspase activation is also switch-like
in the spatial dimension.

The goal of the present paper is to provide a model-based, numerical analysis of the apoptotic
switch in the spatial dimension, considering a simplified spatial caspase activation model based on [6].
In [6] a mathematical model for the core of a simplified, protease-based activation cascade has been
introduced, represented by e.g. the extrinsically triggered caspase cascade in a typical type I cell, where
the concentration of (pro-) caspase 3 and (pro-) caspase 8 were modeled by a four-dimensional system
of ordinary differential equations (ODE). This model is best reflected in biology by a highly sensitive
type I cell, like KYM-1 [15].

The ODE system exhibits two asymptotically stable steady states. One represents the life state of
the cell and is called X(l) in the following. The other is identified with the cellular death state and is
called X(d). Because of the spatial extension of cells and because of the occurrence of the starting signal
for the cell death at the cell membrane in the case of an extrinsic stimulus, it is of interest to consider a
spatially extended version of the ODE model given in [6]. Since the model variants with cooperativity
in caspase activation, binding of caspase 3 to an inhibitor, and zero-order ultrasensitivity were shown
to behave similarly concerning bistability, we study only the first variant where bistability is generated
by cooperativity. This explicitly excludes the well-known binding of caspase 3 to the inhibitor IAP,
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but from the analysis in [6], cooperativity and inhibition are two equally useful mechanism to generate
bistability.

The simplest way to obtain a spatially extended model is to incorporate diffusion of caspase
molecules. This is done in Section 2. The steady states and their stabilities in the reaction-diffusion
system are computed in Section 3. The initial value problem for a number of special concentration
profiles is analyzed by numerical simulations. The results are presented in Section 4. It turns out that
for the parameter regimes under consideration diffusion homogenizes rapidly the concentrations. After
the homogenization they are governed by the original ODE model. For biologically relevant parameters
the cell turns out to be too small for the exhibition of non trivial spatial structures in the apoptosis
process. This is finally shown in A.

Acknowledgment. The authors would like to thank the German Research Foundation (DFG) for
financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1)
at the University of Stuttgart. This paper is partially supported by the “Center Systems Biology” (CSB)
at the University of Stuttgart.

2 The reaction-diffusion model

In this section we recall the cooperative model proposed in [6] and introduce our extension of the model.
In [6], the core of the pro-apoptotic extrinsic pathway is modeled by a four-dimensional ODE-system.
This system describes the time evolution of (pro-) caspase 3 and (pro-) caspase 8 concentrations.
The reactions which are involved in the extrinsic pathway are the activation of pro-caspase 8 by caspase
3 and the activation of pro-caspase 3 by caspase 8

C8 + C3∗ −→ C8∗ +C3∗, C3 + nC8∗ −→ C3∗ + nC8∗, (1)

where the star denotes the active form of the corresponding caspase and n describes cooperativity
effects in the activation of caspase 3. Furthermore, pro-caspase 8 is activated by death receptors at the
cell membrane. We introduce the concentrations

Xi = [C8], Yi = [C3], Xa = [C8∗], Ya = [C3∗] (2)

of the four kinds of caspase. The concentrations are measured in the unit Molar.
Reaction rates are according to the law of mass action and it is assumed that pro-caspase 8 and pro-
caspase 3 are produced in cells with a production rate kp1 and kp2, respectively. Furthermore (pro-)
caspase 8 and 3 is degraded in cells with degradation rates kd1, kd2, kd3 and kd4, respectively. If we
further take into account cooperativity effects described by the exponent n, then following [6] we obtain
the system of ODEs

Ẋa = kc1XiYa − kd1Xa,

Ẏa = kc2YiX
n
a − kd2Ya,

Ẋi = −kc1XiYa − kd3Xi + kp1,

Ẏi = −kc2X
n
a Yi − kd4Yi + kp2.

(3)

We choose the parameter values

kc1 = 8 · 105M−1s−1, kc2 = 8 · 107n−2M−ns−1,
kp1 = kp2 = 1 · 10−11Ms−1, kdi = 0.03min−1, i = 1, . . . , 4,

(4)

close to the values in [5] and [6]. The exponent n ≥ 1 for the cooperativity has no dimension and will
be specified below. The reaction rate kc2 depends on the exponent n according to the units of the
reaction system (3).

Since cells are spatially extended and since the starting signal for the extrinsic signaling pathway
is given at the cell membrane it makes sense to consider a spatially extended version of the ODE
model from [6]. The simplest way to do so is to incorporate diffusion of the caspases into the model.
So, we introduce the spatial variable x ∈ R

d with d the space dimension, and extend (3) by adding
the diffusion terms (d1∆xXa, d2∆xYa, d3∆xXi, d4∆xYi), with diffusion coefficients dj , j = 1, . . . , 4,
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similarly to other spatially extended models in mathematical biology, cf. for instance [16, Sec. 11.2].
The spatial domain under consideration is Ω = {x ∈ R

d, ‖x‖ ≤ L}, i.e. the cell is modeled as a d-
dimensional sphere with radius L. We assume that L takes the value 10 µm.
We eliminate the units of the magnitudes with the transformation x̄ = x/L and t̄ = t/τ , where the time
scale τ = L2/d1 is coupled to the diffusion rate d1 and the length scale L. We divide the equations of
the reaction-diffusion system, which consists of the reaction system (3) extended by the diffusion terms,
by 100 nM, the order of the typical caspase concentration in KYM-1 cells. We get the reaction-diffusion
system in the dimensionless form

∂Xa

∂t̄
= k̃c1XiYa − k̃d1Xa +D1∆x̄Xa,

∂Ya

∂t̄
= k̃c2YiX

n
a − k̃d2Ya +D2∆x̄Ya,

∂Xi

∂t̄
= −k̃c1XiYa − k̃d3Xi + k̃p1 +D3∆x̄Xi,

∂Yi

∂t̄
= −k̃c2YiX

n
a − k̃d4Yi + k̃p2 +D4∆x̄Yi,

(5)

in Ω̄ := {x̄ ∈ R
d, ‖x̄‖ ≤ 1} with D1 = 1, D2 = d2/d1, D3 = d3/d1, D4 = d4/d1. The values for the

diffusion coefficients d1, . . . , d4 can be found for instance in [3, 11, 12], namely

d1 = 18
µm2

s
, d2 = 18.6

µm2

s
, d3 = 18.9

µm2

s
, d4 = 22.7

µm2

s
. (6)

Hence, the ratios of the diffusion coefficients are D2 ≈ 1.03, D3 = 1.05 and D4 ≈ 1.26.
Moreover, the reaction, production and degradation rates in the dimensionless form are

k̃c1 = kc1 · τ · 100 nM = 0.444, k̃c2 = kc2 · τ · (100 nM)n = 0.444,

k̃dj = kdj · τ/60 = 0.0028, k̃pi = kpi · τ/100 nM = 5.556 · 10−4,
(7)

i = 1, 2; j = 1, . . . , 4. The reaction-diffusion system (5) has to be completed with boundary conditions.
Instead of mixed boundary conditions describing the activation of pro-caspase 8 by death receptors at
the cell membrane, we assume that there is no flux of caspases through the cell membrane, but assume
simultaneously that a region near the boundary is initially filled with the death state X(d), whereas
the rest of the cell is initially filled with the life state X(l). This assumption corresponds to a fast
activation of pro-caspase 8 and pro-caspase 3 at the cell membrane by death receptors and active cas-
pase 8, respectively. Physiologically, this resembles a situation where death receptors are activated by
a pulse stimulus and subsequently deactivated, for example by receptor internalization and turnover.

The death state X(d) := (X
(d)
a , Y

(d)
a , X

(d)
i , Y

(d)
i ) and the life state X(l) := (X

(l)
a , Y

(l)
a , X

(l)
i , Y

(l)
i ) will

be computed in Section 3.

In detail our assumptions are as follows. System (5) is completed with homogeneous Neumann
boundary conditions at the boundary ∂Ω̄ due to the assumption that there is no flux of caspases
through the cell membrane. Moreover, we choose localized caspase concentrations as initial conditions

(Xa, Ya, Xi, Yi)(x̄, 0) =

{

(X
(d)
a , Y

(d)
a , X

(d)
i , Y

(d)
i ) for x̄ ∈ Ω̄ext,

(X
(l)
a , Y

(l)
a , X

(l)
i , Y

(l)
i ) for x̄ ∈ Ω̄in

(8)

with

Ω̄ext := {x̄ ∈ R
d, R0 ≤ ‖x̄‖ ≤ 1} and Ω̄in := {x̄ ∈ R

d, ‖x̄‖ < R0} (9)

for an arbitrary but fixed R0 ∈ (0, 1). Finally, we introduce the short form of the reaction-diffusion
system (5)

∂u

∂t̄
= D∆x̄u+ f(u) (10)

with u = (Xa, Ya, Xi, Yi)
⊤, D = diag {1, D2, D3, D4} and the function f(u) containing the reaction

kinetics of (5). Equation (10) is more easy to handle in the stability analysis in Section 3.

Since we are interested in the question which of the two asymptotically stable steady states, namely
the life state and the death state, is approached in the spatially extended model, we first compute in
Section 3 the two stable steady states denoted with X(d) and X(l). Afterward, we study the stability
of these steady states.
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3 The steady states and their stability

The life state and the death state from [6] are time and space independent solutionsX = (Xa, Ya, Xi, Yi)
of the reaction-diffusion system (5) and satisfy the equations

k̃c1XiYa − k̃d1Xa = 0,

k̃c2YiX
n
a − k̃d2Ya = 0,

−k̃c1XiYa − k̃d3Xi + k̃p1 = 0,

−k̃c2YiX
n
a − k̃d4Yi + k̃p2 = 0.

(11)

By expressing Ya, Xi and Yi subject to Xa we get one nonlinear equation for Xa

(k̃c1k̃c2k̃d1k̃p2 + k̃c2k̃d1k̃d2k̃d3)X
n+1
a − k̃c1k̃c2k̃p1k̃p2X

n
a

+ k̃d1k̃d2k̃d3k̃d4Xa = 0. (12)

The first solution denoted with X(l) := (X
(l)
a , Y

(l)
a , X

(l)
i , Y

(l)
i ) is given by

X(l) = (0, 0,
k̃p1

k̃d3
,
k̃p2

k̃d4
) = (0, 0, 0.2, 0.2).

This solution exists independently of the choice of the parameter values and the exponent n ≥ 1 as
long as k̃d3 6= 0 6= k̃d4. For finding the other solutions we have to solve the equation

(k̃c1k̃c2k̃d1k̃p2 + k̃c2k̃d1k̃d2k̃d3)X
n
a − k̃c1k̃c2k̃p1k̃p2X

n−1
a + k̃d1k̃d2k̃d3k̃d4 = 0. (13)

When there is no cooperativity, i.e. n = 1, then equation (12) has at most two real solutions and
hence, the system exhibits no bistable behavior. In the following we study the case n = 2. We solve
(13) numerically and receive two real-valued positive solutions

X(d) := (X(d)
a , Y (d)

a , X
(d)
i , Y

(d)
i ) = (0.1930, 0.1713, 0.0070, 0.0287),

X(u) := (X(u)
a , Y (u)

a , X
(u)
i , Y

(u)
i ) = (9.82 · 10−4, 3.08 · 10−5, 0.1990, 0.2000).

In order to analyze the stability of these solutions we look at the Jacobian

J |X∗ =









−k̃d1 k̃c1Xi k̃c1Ya 0

2k̃c2YiXa −k̃d2 0 k̃c2X
2
a

0 −k̃c1Xi −k̃c1Ya − k̃d3 0

−2k̃c2YiXa 0 0 −k̃c2X
2
a − k̃d4









∣

∣

∣

∣

∣

∣

∣

∣

X∗

(14)

of the right hand side of the reaction system (3) evaluated at the steady states X∗ ∈ {X(l), X(d), X(u)}.
The eigenvalues of the Jacobian for the three steady states are given by

X(l) : λ
(l)
1,2,3,4 = −0.0028,

X(u) : λ
(u)
1 = λ

(u)
2 = −0.0028, λ

(u)
3 ≈ 0.0011, λ

(u)
4 ≈ −0.0067,

X(d) : λ
(d)
1 = λ

(d)
2 = −0.0028, λ

(d)
3 ≈ −0.0191, λ

(d)
4 ≈ −0.0791.

(15)

We see that X(l) and X(d) are asymptotically stable and X(u) is unstable in the reaction system (3).
Therefore, we get a bistable behavior for this special choice of parameter values.
In order to analyze the stability of the steady states X(l), X(u), and X(d) in the reaction-diffusion
system (5), we consider (10) and follow the argumentation of Casten and Holland in [2]. Thus, we
study the linearized system and conclude the local stability properties of the nonlinear system from
the stability properties of the linearized system. We linearize the reaction-diffusion system (10) with
respect to the stationary solution X∗ ∈ {X(l), X(d), X(u)} by introducing the perturbation z(x̄, t̄), i.e.
u(x̄, t̄) = X∗ + z(x̄, t̄). This ansatz yields the linearized system for the perturbation of the stationary
solutions

∂z

∂t̄
= D∆x̄z + J |X∗z. (16)
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The stability of the zero solutions of the linearized system is determined by the eigenvalues
µ1(λk), . . . , µ4(λk) of the matrix M(λk) := J |X∗ − λkD, where λk, k = 0, 1, 2, . . . , are the eigenvalues
to the eigenfunctions ϕk ∈ R

1 of the Laplace operator, i.e. they fulfill the equation

−∆ϕk = λkϕk in Ω = {x ∈ R
d| ‖x‖ ≤ 1} (17)

with homogeneous Neumann boundary conditions ∂ϕk

∂n
|∂Ω = 0, cf. Theorem 1 in [2]. For simplicity, we

restrict the eigenvalue problem to the one-dimensional case, i.e. Ω = [−1, 1], and the Laplace operator
is replaced by the second derivative. Hence, the eigenvalue problem becomes

−ϕ′′
k = λkϕk in [−1, 1] (18)

with homogeneous Neumann boundary conditions ϕ′
k(−1) = ϕ′

k(1) = 0. The eigenvalues are λk = π2·k2

and the corresponding standardized eigenfunctions are ϕk(x) =
√
2
2 cos(kπx), k ∈ N0.

With the eigenvalues λk, k ∈ N0, at hand we compute the eigenvalues of the matrix M(λk) for the
three steady states.

i) For X∗ = X(l) the real part of each eigenvalue µ1(λk), . . . , µ4(λk) of the matrix M(λk) takes
negative values for all eigenvalues λk, k = 0, 1, . . . , and the maxima of the eigenvalues of M(λk) are
reached for λ0, see Fig. 1,

max
k∈N0

(Re(µ
(l)
i (λk))) ≈ −0.0028, i = 1, . . . , 4.

Hence, the zero solution is asymptotically stable for the linearized system (16) and Theorem 2 in
[2] yields the asymptotic stability of X(l) for the reaction-diffusion system (10).

ii) For the steady state X∗ = X(u), the real part of one eigenvalue takes a positive value for λ0. The
maxima of the real part of the eigenvalues µ1(λk), . . . , µ4(λk) are

max
k∈N0

(Re(µ
(u)
1 (λk))) = max

k∈N0

(Re(µ
(u)
2 (λk))) ≈ −0.0028,

max
k∈N0

(Re(µ
(u)
3 (λk))) ≈ 0.0011,max

k∈N0

(Re(µ
(u)
4 (λk))) ≈ −0.0067.

Hence, the zero solution is unstable for the linearized system (16) and thereby the stationary
solution X(u) is unstable for the system (10).

iii) For X∗ = X(d) the real part of each eigenvalue µ1(λk), . . . , µ4(λk) is negative, cf. Fig. 1, and the
maxima are reached for λ0

max
k∈N0

(Re(µ
(d)
1 (λk))) = max

k∈N0

(Re(µ
(d)
2 (λk))) ≈ −0.0028,

max
k∈N0

(Re(µ
(d)
3 (λk))) ≈ −0.0191,max

k∈N0

(Re(µ
(d)
4 (λk))) ≈ −0.0791.

Hence, the zero solution is asymptotically stable for the linearized system (16) and the stability of
X(d) for the reaction-diffusion system (10) follows from Theorem 2 in [2].

Remark 1 In [6] bistable behavior of the system (3) has been shown with the help of the phase portrait
for a reduced system in the case n = 2.5. In general, system (3) shows bistable behavior for all values
n > 1, corresponding to cooperativity in caspase activation, and a certain choice of parameter values,
cf. (12).

The analysis here is only for the case where bistability is generated from cooperativity in caspase
activation. According to the results in [6], similar results are expected for model variants where bista-
bility is either due to binding of caspase 3 to an inhibitor or zero-order ultrasensitivity in caspase
degradation.

In Section 3, we showed that the reaction-diffusion system (5) possesses two spatially homogeneous,
asymptotically stable steady states and one spatially homogeneous, unstable steady state. In Section 4,
we investigate which of the two asymptotically stable steady states is approached for a given initial
condition of the reaction-diffusion system.
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Fig. 1 Eigenvalues of the matrix M(λk) for X(l) (left panel) and for X(d) (right panel) dependent on the

mode k. For X(l) and X(d) the eigenvalues of the matrix M(λk) are negative for all k ∈ N0.

4 Analysis of spatial inhibition effects

With the steady states at hand we come back to the initial value problem stated in Section 2. For
the numerical simulations, we simplify the model and restrict ourselves to radially symmetric caspase
concentrations. So, the (d+1)- dimensional reaction-diffusion system (5) with d space dimensions and
one time dimension is reduced to an effective two-dimensional model with one spatial dimensionless
coordinate r and one time coordinate t̄. The Laplace operator ∆x̄ for radially symmetric functions is
given by

∆x̄w =
1

rd−1

∂

∂r

(

rd−1 ∂w

∂r

)

, w ∈ {Xa, Ya, Xi, Yi}, d = 1, 2, 3. (19)

Under these assumptions, the reaction-diffusion system (5) becomes

∂Xa

∂t̄
= k̃c1XiYa − k̃d1Xa +

1
rd−1

∂
∂r
(rd−1 ∂Xa

∂r
),

∂Ya

∂t̄
= k̃c2YiX

n
a − k̃d2Ya +D2

1
rd−1

∂
∂r
(rd−1 ∂Ya

∂r
),

∂Xi

∂t̄
= −k̃c1XiYa − k̃d3Xi + k̃p1 +D3

1
rd−1

∂
∂r
(rd−1 ∂Xi

∂r
),

∂Yi

∂t̄
= −k̃c2YiX

n
a − k̃d4Yi + k̃p2 +D4

1
rd−1

∂
∂r
(rd−1 ∂Yi

∂r
).

(20)

The radially symmetric reaction-diffusion system (20) is completed with homogeneous Neumann bound-
ary conditions at the boundaries r = 0 and r = 1; at the boundary r = 0 because of the smoothness
of the radially symmetric concentration distribution at the center and at the boundary r = 1 due to
the assumption that there is no flux of caspases through the cell membrane. Moreover, we consider
localized caspase concentrations as initial conditions, cf. (8).

Hence, we study the competition between a spatially localized death state corresponding to high
active caspase concentrations close to the cell membrane and the life state corresponding to low active
caspase concentrations in the interior of the cell. If the region initially occupied by the death state
is small the life state wins against the death state so that the complete cell is finally filled with the
life state again. In order to establish this behavior we solve the reaction-diffusion system (20) with
an implicit Euler scheme where the spatial derivatives are discretized with a first order centered finite
difference method [10].
We observe the following behavior. The dynamics can roughly be separated in two steps. At the begin-
ning the diffusion process is much faster than the reaction kinetics. After about 3 seconds the diffusion
process has balanced the gradient in the caspase concentrations and yields an almost homogeneous
distribution of caspase molecules, see Fig. 2 and Fig. 3. Afterward, the diffusion process is almost
irrelevant for the dynamics and the reaction kinetics determines the behavior of the system. Thus, we
solve the reaction-diffusion system (20) with homogeneous Neumann boundary conditions until the
gradient in the concentrations is smoothed by the diffusion process and solve subsequently the ODE
system corresponding to the reaction kinetics with the values of the almost homogeneously distributed
caspase concentrations as initial conditions.
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Fig. 2 The time passed until the gradient in the caspase concentrations is smoothed by the diffusion process
depends on the size of the region initially occupied by the death state.
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Fig. 3 Numerical solution of the radially symmetric reaction-diffusion system (20) with homogeneous Neumann
boundary conditions after 1 (left top), 10 (right top), 100 (left bottom) and 5000 (right bottom) time-steps in
the case d = 1. The step-size in time is ∆t̄ = 1/10000, multiplied with τ = 50/9 s yields a “homogenization
time” of about 2.5 s. The mesh size for the spatial discretization is ∆r = 0.0001 and R0 = 0.99.

The simulation is stopped at the time t = t∗ if dist(l)(t∗) < 10−1 or dist(d)(t∗) < 10−1 where

dist(∗)(t) := maxv∈{Xa,Ya,Xi,Yi}{|v(t) − v∗|/|v(u) − v∗|} and the star is replaced either by ’d’ for the

death state or ’l’ for the life state. The stopping criterion dist(l)(tl) < 10−1 defines the “life time” tl

and the criterion dist(d)(td) < 10−1 the “death time” td. With this numerical simulation, we finally
find the critical value Rc = sup{R0,whereR0 is the size of the region where the life state wins} for the
initial condition of the reaction-diffusion system (20). The physical value for Rc is computed to be in
one dimension R1d

c = 4nm, in two dimensions R2d
c = 2nm, and in three dimensions R3d

c = 1nm.
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The spherical shell initially, homogeneously filled with caspase 3 and caspase 8 approximately has
a volume of 1.26µm3. Since we consider a cell modeled by a sphere with radius 10µm and volume
V ≈ 4.19 · 103 µm3, the death state initially occupies less than one per mill of the cell. For this size of
death region, the death state does not succeed to invade the region occupied by the life state but for
larger regions of initial caspase activation, the death state will ultimately cover the complete cellular
volume. In addition to the value for Rc, we get with numerical simulations the dependence of the
“death time” on the size of the region initially occupied by the death state, see Fig. 4. The time passed
until the cell dies is of a realistic biological order, since in living cells or in manipulated cells produced
for experiments, it takes about 15 minutes from stimulation of the signaling pathway to the occurrence
of cell death. The simulations yield in the three-dimensional case for radially symmetric concentration
distributions a death time of 30 to 250 minutes dependent on the strength of the initial activation, i.e.
the size of the region initially filled with the death state.
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Fig. 4 The figure shows the dependence of the “death time” on the size of the region initially occupied by the
death state in the three-dimensional case. Again, we choose ∆r = 0.0001.

Similar results are obtained also for initial conditions different from the death state close to the
boundary: taking arbitrary initial conditions where the caspase 8 and caspase 3 concentrations are high
close to the boundary of the cell and where the rest of the cell is filled with the life state shows the same
effects. Again diffusion will homogenize the caspase concentrations within a few seconds. Afterward
the concentrations will be governed by the original reaction system. Concentrations of caspase 8 and
caspase 3 above the ones of the death state will decrease the time which is necessary to kill the cell.
Therefore, the important variable is the averaged initial concentration of caspase 8 and caspase 3, i.e.
for a fixed cell the total number of caspase 8 and caspase 3 molecules at the beginning of the apoptosis
process.

We see that the spatial extension of the cell leads to an inhibition effect of apoptosis. There is a
threshold of area which has to be occupied by the death state before the death state can invade the
region occupied by the life state.

5 Discussion

In this study, we introduced a spatial extension of the caspase cascade model established in [6]. Similar
to [6] we computed the steady states of the reaction system and analyzed the stability properties. For
our chosen parameter setting, we found two asymptotically stable and one unstable steady states. The
values for the life state and the transition state are located close to each other, more precisely the
difference in the concentrations is of the order pM. Nevertheless, the difference of the concentrations
in a cell with radius 10 µm amounts to at least 8 molecules. The difference in the other components
is much larger. Thus, the steady states are biologically distinguishable. Furthermore, the location of
the steady states in the phase space depends on the choice of the parameter values and the difference
between the steady state concentrations is larger for other choices of parameter values.
For the spatial extension of the model introduced in [6], we assumed for simplicity that the dynamics
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of the caspase molecules in space obeys a diffusion process. We showed stability properties of spatially
homogeneous stationary solutions and solved the reaction-diffusion system in the case of radially sym-
metric caspase concentrations numerically for several initial conditions and homogeneous Neumann
boundary conditions. In [14], a radially symmetric reaction-diffusion system is used for modeling the
MAPK pathway and phosphorylation waves traveling over long distances with constant amplitude and
high velocity were found. In our case, the radially symmetric reaction-diffusion system (20) introduced
in Section 4 does not allow the existence of traveling wave solutions on the biological scale of interest.
We discuss the non trivial spatio-temporal structure of the numerical solution of (20) in the A.
In our model, we assumed that the activation of pro-caspase 8 by death receptors at the cell mem-
brane occurs on a very small time scale in relation to the diffusion process, so that the activation of
pro-caspase 8 by death receptors is integrated into the model as initial condition. Physiologically, this
pulse stimulus corresponds to a death receptor internalization and turnover.
In order to analyze spatial inhibition effects, we studied the behavior of the system in dependence of
the strength of the initial caspase activation with numerical simulations. The strength of the activa-
tion corresponds to the size of the region initially occupied by active caspase 3 and caspase 8. The
simulation showed that the system possesses a switch-like behavior referred to the activation strength.
For a spherical shell with a thickness of 1 nm, which is initially filled with the death state, the initial
activation is not sufficient to transfer the signal to the nucleus and the cell is finally filled with the life
state. For the KYM-1 cell, modeled by a sphere with radius 10 µm, the spherical shell with a thickness
of 1 nm has a volume of 1.26 µm3 and the initial concentration of activated caspases corresponds to
15 molecules. That means, 15 molecules of initially activated caspase 8 and caspase 3 homogeneously
distributed at the cell membrane are not sufficient to kill the cell. But, if the spherical shell initially
filled with active caspase has a thickness of 2 nm, the cell is finally filled with the death state. This
initial concentration of caspase 3 and caspase 8 correspond to 30 molecules per caspase type. Thus,
we find that the spatially extended model of caspase activation provides an apoptotic switch in the
spatial dimension.

6 Conclusion

For a reaction-diffusion model for the description of the caspase cascade we showed the existence of two
asymptotically stable and one unstable, spatially homogeneous stationary solution. Further investiga-
tions of the reaction-diffusion model indicate that the dynamics of the caspase concentrations happen
in two steps. The first step is dominated by diffusion and takes only a few seconds. Heterogeneous
initial conditions are homogenized in space by this process. In the second step there is pure ODE
dynamics. Thus, after the homogenization process the original model of Eissing et al [6] is sufficient
for the description of the apoptosis process. We showed with numerical simulations that the spatially
extended model of caspase activation provides an apoptotic switch in the spatial dimension.
In order to confirm that spatial effects after the first diffusion step do not play any further role we com-
pute in the appendix the relevant spatio-temporal structures in a spatially extended domain, namely
the front solutions which describe the spreading of the death state into the region occupied by the life
state. It turns out that these structures are by a factor 100 too large to fit into a cell.

A The size of the relevant spatial structures

A typical characteristic of bistable reaction-diffusion systems for d = 1 is the existence of traveling wave
solutions connecting the two asymptotically stable steady states, cf. [9, Section 5]. In Section 4 we solved
the reaction-diffusion system with homogeneous Neumann boundary conditions and certain initial conditions
but the numerical solution did not show the structure of a traveling wave solution. In order to analyze the
spatio-temporal structures of the solution, we solve the reaction-diffusion system with homogeneous Neumann
boundary conditions and the initial conditions

X(r, 0) = X(l) for 0 ≤ r < 500 and X(r, 0) = X(d) for 500 ≤ r ≤ 1000

on the interval [0, 1000]. Although for d ≥ 2 no exact traveling wave solution exists, a similar behavior occurs.
For the numerically observed front like solution the death state expands into the region occupied by the life state,
cf. Fig. 5. There is one prescribed velocity c̄ of the front which is independent of the chosen initial condition.
Our numerical experiments show a front like behavior with an approximate velocity |c̄| ≈ 0.2124 for the chosen
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parameter values in the case d = 3. Then, taking L = 10 µm, the physical wave speed is |cphys| ≈ 0.382µm
s
.

This behavior is robust with respect to perturbations of the initial conditions and with respect to variations
of the parameters. In order to study the robustness concerning variations in the parameter values we choose
the parameter values k̃c1 = k̃c2 = 0.444, k̃p1 = k̃p2 = 5.556 · 10−4 and four pairwise different degradation rates

k̃d1 = 0.0028, k̃d2 = 0.0025, k̃d3 = 0.0022 and k̃d4 = 0.0033. Here, the degradation rates are arbitrarily chosen.
The structure of the solution is depicted in Fig. 5. The numerical simulation shows the existence of a front like
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Fig. 5 Traveling wave solution which moves from the right to the left for k̃d1 = k̃d2 = k̃d3 = k̃d4 (left panel) and
non-monotone traveling wave solution which moves from the right to the left for pairwise different degradation
rates (right panel) in the case d = 3 for the radially symmetric reaction-diffusion system (20). Solid line: caspase
8, dashed line: caspase 3, dash-dotted line: pro-caspase 8, dotted line: pro-caspase 3

solution connecting the two asymptotically stable steady states. We notice that the structure of the front like
solution is by a factor 100 too large to fit into the cell. If diffusion is reduced by obstacles by a factor 104 the
size of the front is below the dimension of the cell. However, the speed of the front then will be so small that
execution of cell death would take an unphysiologically long time. Biologically, this hints to the possibility that
cells may survive a spatially confined high activation of caspases, when caspases are immobilized or at least
have a significantly reduced diffusion coefficient.
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