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Abstract

Signal transduction networks are complex, as are their mathematical models.
Gaining a deeper understanding requires a system analysis. Important aspects are
the number, location and stability of steady states. In particular, bistability has
been recognised as an important feature to achieve molecular switching. This paper
compares different model structures and analysis methods particularly useful for
bistability analysis.

The biological applications include proteolytic cascades as, for example, encoun-
tered in the apoptotic signalling pathway or in the blood clotting system. We com-
pare three model structures containing zero-order, inhibitor and cooperative ultra-
sensitive reactions, all known to achieve bistability. The combination of phase plane
and bifurcation analysis provides an illustrative and comprehensive understanding
of how bistability can be achieved and indicates how robust this behaviour is.

Experimentally, some so-called “inactive” components were shown to have a resid-
ual activity. This has been mostly ignored in mathematical models. Our analysis
reveals that bistability is only mildly affected in the case of zero-order or inhibitor
ultrasensitivity. However, the case where bistability is achieved by cooperative ul-
trasensitivity is severely affected by this perturbation.
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1 Introduction

Mathematical models of biological signalling processes have been proven use-
ful for more than half a century, e.g. Hodgkin and Huxley (1952), and the
interest in pursuing model aided approaches is growing (Ventura et al., 2006).
Modelling has been extensively used to uncover principal roles and functions
of reaction networks and network elements, e.g. Tyson et al. (2003); Mangan
and Alon (2003); Yeger-Lotem et al. (2004); Wolf and Arkin (2003). Important
characteristics of mathematical models and the processes described by these
models are attraction phenomena such as steady state behaviour or limit cycles
(oscillations). Despite the inherent nonlinearity of biological systems, chaotic
attractors appear to be of less importance (Shmulevich et al., 2005). Biological
processes rather operate in an ordered regime and are robust against perturba-
tions as is now also supported by the analysis of various mathematical models
(Stelling et al., 2004).

This article focuses on systems where spatial and stochastic effects can be
neglected. These systems can be mathematically represented by ordinary dif-
ferential equations (ODEs). Qualitative analyses are important to reveal prin-
cipal system characteristics. Basic qualitative properties of signal transduction
models are steady states, limit cycles and transients. System structure and pa-
rameter values dictate these properties. Thereby, robustness with respect to
parameter changes is important to account for variations between cells or over
time.

Bistability is a nonlinear phenomenon relevant in numerous signal transduc-
tion systems and allows to interpret many phenomena (Eifing et al., 2004;
Ferrell and Xiong, 2001; Ferrell, 1996; Tyson et al., 2003; Thron, 1997; Cherry
and Adler, 2000; Qu et al., 2003). The best studied biological example with
respect to bistability are kinase cascades as exemplified by the mitogen acti-
vated protein kinase (MAPK) cascade (Ferrell and Xiong, 2001; Ferrell, 1997,
1996; Huang and Ferrell, 1996; Markevich et al., 2004; Bhalla et al., 2002). It
has been established that bistability generally requires two ingredients (Ferrell
and Xiong, 2001; Angeli et al., 2004). The first is an ultrasensitive reaction
mechanism. Ultrasensitivity refers to a system response that is more sensitive
to changes in the component concentrations than is the normal hyperbolic
response given by the Michaelis-Menten equation (Koshland, 1998), e.g. a Hill
type response (Weiss, 1997). The second is positive feedback, which can be
implemented by only positive (activatory) feedback or an even number of neg-
ative (inhibitory) interactions along the loop (Angeli et al., 2004). However,
both ingredients are only necessary but not sufficient to generate bistability.
Whether the system is then bistable or not is strongly dependent on the pa-
rameter values (Ferrell and Machleder, 1998; Xiong and Ferrell, 2003)(see also
Section 3). Despite several case studies, the development of general approaches



to determine bistability is rather difficult. Recently, promising approaches for
special system classes have been described (Angeli et al., 2004; Angeli, 2006).
Admittedly, due to the restriction to special classes the widespread use of these
approaches is still limited so far.

Phase-plane and bifurcation analyses enable an illustrative insight into the
qualitative system behaviour (Strogatz, 2001). They allow an efficient analy-
sis of steady states with respect to number, location and stability. Classical
phase-plane analysis is considering the phase-space of second order systems.
It is able to illustrate the vector field governing the differential equations, or
selected properties thereof, for a fixed parameter set. If larger systems can be
reduced by the elimination of variables, they are also amenable to a phase-
plane analysis, e.g. Tyson et al. (2003). Bifurcation analyses explore how phase
space properties like steady states and limit cycles depend on the parameters.
Restrictions are only introduced by numerical accuracy, computational power
and graphical illustration.

In this study, we will explore and compare different mechanisms for generat-
ing a bistable behaviour. Systematic comparisons of these mechanisms have
so far been scarce and in addition we chose a less well studied class of bi-
ological reactions, namely systems of proteins that can mutually cleave and
thereby activate each other. This kind of reaction is frequently encountered in
biology, e.g. during programmed cell death or blood clotting. Especially the
irreversibility of the involved modification, i.e. protein cleavage, renders the
problem special in comparison to other biological reaction systems. For ex-
ample, in the above mentioned kinase cascade the modification can be easily
reversed through a back reaction, i.e. phosphatases catalysing the dephospho-
rylation.

In Section 2 we will introduce and motivate the models analysed in the fol-
lowing. Section 3 provides an overview on the concept of phase plane anal-
ysis at the example of a cooperative model. Section 4 compares three basic
reaction mechanisms allowing for a bistable behaviour, i.e. cooperativity, in-
hibitor binding and back reaction saturation and discusses briefly additional
mechanisms. A different viewpoint on the system behaviour in dependence on
parameters and possible external inputs is provided in Section 5 through bifur-
cation analyses at the example of the inhibitor model. In Section 6 we extend
these comparisons to include the influence of residual activities of so-called “in-
active” components. Although experimentally established, for simplicity this
influence has so far been mostly ignored in mathematical models.



2 Mathematical models and their biological relevance

As introduced, we will focus on simple reaction networks describing pro-
teases, i.e. proteins that can cleave other proteins. Several findings as well
as the methodological approach are however also applicable to many reaction
schemes found in signal transduction.

Section 2.1 provides a short overview of the biological context and relevance
of the studied reaction systems that are detailed in Section 2.2.

2.1 DBiological relevance of protease cascades

Proteases are proteins able to cleave other proteins. They are a wide-spread
class of enzymes implicated in diverse metabolic and regulatory functions.
This study focuses on protease cascades, i.e. inter-winded protease reactions.
A prominent example where this reaction setup can be found is apoptosis.

Apoptosis is a form of programmed cell death which can be executed in ev-
ery cell. The programme is essential to remove cells that are old, infected or
potentially dangerous. Misregulation is implicated in severe pathological al-
terations (Danial and Korsmeyer, 2004; Hengartner, 2000; Leist and Jaattela,
2001). Caspases, a family of aspartate directed cysteine proteases, are at the
heart of apoptosis. Caspases are produced in an inactive pro-form also called
zymogen which is activated by proteolytic cleavage. Initiator caspases sense
the internal or external status of the cell and once activated, they can cleave
and thereby activate downstream executioner caspases. Various feed-back and
-forward loops have been described to yield a complex reaction network at the
caspase level already (Sohn et al., 2005; Stennicke and Salvesen, 1999; Slee
et al., 1999; Van de Craen et al., 1999; Hengartner, 2000).

However, protease cascades are by far not restricted to apoptosis. The blood
clotting system heavily relies on the proteolytic cleavage of key regulators and
clotting substrates with several inhibitors and feedback loops being known
(Dahlbéck, 2000; Zarnitsina et al., 2001; Beltrami and Jesty, 1995). Further,
proteases such as cathepsin or metallo-proteases are implicated in many reg-
ulatory processes within and immediately outside of the cell, also critically
involved in diverse and severe diseases (Overall and Lopez-Otin, 2002; Dash
et al., 2003; Grabowskal et al., 2005; Thurmond et al., 2005; Sloane et al.,
2005; Yamashima, 2004).

The above overview shows that reaction networks of interacting and mutu-
ally activating proteases are frequently used in cellular systems and that one
important role is the finding or execution of cellular decisions. Decisions of-



ten involve molecular switches that convert continuous inputs into discrete
outputs to safeguard transitions between different cellular states. When using
ODEs to describe these processes, steady states correspond to these cellular
states and a switch is commonly represented by a bistable system.

2.2  Model overview and notation

We consider the models outlined in Fig. 1. In the simplest form, we consider
two proteases X and Y (Fig.1, white background). The inactive protease X is
activated by an input (or external stimulus) U yielding the activated form of
the protease X, (reaction rate rg). X, itself is then able to activate the inactive
protease Y; to give Y, (rs), which can feed-back on X (r1). In general we use
mass action kinetics. We also consider the effects of a cooperative mechanism
in the activation of Y (ry) and compare the results to effects conferred by
inhibitors of activated proteases (I; and I, r3 and r4) or a saturation in the
degradation (see below). In apoptosis signalling, X, Y and I correspond to
initiator and executioner caspases and inhibitor of apoptosis proteins (IAPs),
respectively. Thereby initiator caspases as a first approximation can be viewed
as the receptor associated initiator caspases 8 and 10 or the intrinsic pathway
initiator caspase 9. We further study the influence of zymogen activity (ris
and 714 omitted in Fig. 1 for clarity), i.e. the inactive proteases have a residual
activity and can thus catalyse the same reactions as the activated protease,
but with a lower efficiency.

u IX(

Figure 1. Model outline. Schematic sketch of the models used in this study. Please
see Section 2.2 for details.

We will consider a turnover of all involved components (r5 — r13). For this
turnover we assume that all components are degraded (with a kinetic propor-
tional to their concentration unless a saturation is assumed), while only the
non-activated and non-bound proteins will also be produced (with a kinetic
independent of the concentration). Although the biological mechanisms are,



of course, totally different for producing and degrading pathways, we com-
bine them into one apparent net rate for convenience (turnover rates with
arrowheads on both ends).

A turnover is essential because we would like to evaluate the steady state be-
haviour with a focus on bistability. As we consider proteolytic reactions, it can
be assumed that these are essentially irreversible. Thus, negligence of protein
turnover would inevitably lead to a complete activation of the proteases in
the setup described above once a single molecule would be activated, e.g. by
a minor input U.

Irreversibility, turnover and inhibitors are essential differences to well studied
examples, e.g. the MAPK cascade. These differences also prevent the straight-
forward application of new powerful methods developed in the framework of
monotone systems (Angeli et al., 2004; Angeli, 2006). Although simplifications
(as illustrated below) can render some of the models introduced here mono-
tone, we will rely on classical phase plane analysis (which is related but much
wider known).

If not indicated otherwise, we do not explicitly consider the input U but rather
evaluate the behaviour of the system with U = 0. If we consider U as an
impulse, we account for the molecules activated by U in the initial conditions
of the system without input. Thus, we only explicitly have to account for U
when considering a different kind of input signal (e.g. a constant stimulus).

We denote the kinetic rate constants by £;,, whereby the index j describes the
class the parameter is belonging to, i.e. k. for catalytic constants involved in
the cleavage reactions, k¢, and ky, for the forward and backward reaction con-
stants of binding reactions, k4 and k,, for degradation and production terms
and k., for zymogen mediated cleavage reactions. The index r corresponds to
the reaction rate number as given in Fig. 1. At the point where we consider
saturation effects, we use Michaelis-Menten instead of mass action kinetics
and denote the Michaelis-Menten constant with K ;. and the maximal rate
constant with k,,,.

Parameter values are explicitly only used in the normalized models introduced
in Section 3.2. Due to this normalization, Michaelis-Menten constants corre-
spond to a normalized concentration, n is dimensionless, and all other param-
eters are in one per unit of time. If not specified otherwise we use the following
parameter values p = (ker, 1, Kfry Kb, Kary kpry K, Karr) = (0.01,2.5,1,0.001,
0.003, 0.003, 0.003,0.01).



3 Steady states and their stability in a cooperative model

As outlined in Section 2.2, we start with a simple model only considering
two mutually activating proteases that exist in an active and inactive form.
We start with the general description of a model considering a cooperative
action of n molecules X, to activate Y (7o, Fig. 1). A simpler model without
cooperativity can be obtained by setting n = 1. We introduce the external
input U, but neglect it in the following most of the time. Using the introduced
mathematical approach, we obtain the following system of coupled nonlinear
ODEs

Xa:kcl'Xi'Ya—de‘XanU'Xi’ (1)
YaIkCQ'Y;"Xg_kd6'Ya7 (>
X@':_kcl'Xi'Ya_kdg'Xi+kp97 (3>

(4)

Y= —key - Y- X" — kaio - Yi + Epno.

Introducing the vector x = (X,, Y,, X;, Y;) the ODE system can be written in
the compact form & = f(z) + g(z) - U.

In Section 3.1 we show an approach to visualize the steady states of the full
system in the phase plane. In Section 3.2 we introduce simplifications for
clarity not affecting the qualitative behaviour of the system, before providing
a phase plane analysis in Section 3.3.

3.1 Steady state analysis of the full system

The above ODE system (1)—(4) is nonlinear. The coupling of the ODEs makes
the determination of steady states non-trivial. We assume U = 0. To obtain
the steady states we can partly solve the equation system at steady state and
visualize the solution in the phase plane. To eliminate two equations we can
solve f3(z) = 0 for X; and substitute the solution into f; and similarly solve
fa(x) = 0 for Y; and substitute the solution into fo. The two equations left
provide nullclines in the phase plane whose intersections are steady states

kel - kpo - Y,
Xa: c D a ’ 5
kd5'<kd9+kcl 'Ya) ( )
keo - kpio - X
Y;l 2 pl10 a (6)

" gs - (kaio + kea - X))

In the general case, this procedure is possible if the equation to be eliminated
can be solved for the variable to be eliminated.



3.2 Simplifications and normalisation

The above equations contain several parameters. As shown, deriving a general
solution is still straightforward. However, we will now introduce a simplified
system and afterwards show the similarities to the full system.

Assuming equal degradation rates for active and inactive proteases, i.e. kg5 =
kqo and ks = kq109, the ODEs for X; and Y; are decoupled

Xt:Xa+Xi:_de'Xa_de'Xi+kp9:_k:dQ'Xt+k:p9 (7)
Y=Y, +Yi= —kas - Yo — kaio - Ys + kpio = —Fkaio - Yi + kpio- (8)

The system (1)—(4) is equivalent to the system (1)—(2), (7)-(8), i.e. we replace
the ODEs for the inactive components by those of the total concentrations.
Assuming the total concentrations to be in steady state, X; = kpo/kq9 and
Y;: = kpi0/karo- With these concentrations as initial conditions, X; and Y; are
constant over time and the system can be reduced to two ODEs, (1) and
(2). An equivalent system is obtained by considering relative concentrations,
namely X, = X,/X; and Y, = Y,/Y;. As an additional simplification, we
assume kg9 = kg0 = kg and define k1 = k.1 - Y; and kg = ko - X}' to get

X, =ki-(1-X,)-Y, —kqg- X, (9)
Yo=ky-(1=Y,) X! —kq- Y, (10)

The nullclines of this system are

ki-Y,
X, = 11
" kit kY (11)
ko - X
y, = Ay 12
Fa+ o - X7 (12)

Notice, these nullclines are equivalent to equations (5) and (6) under the above
assumptions. Also notice, we started of with mass action kinetics and the
steady state solutions have the same form as the well known Michaelis-Menten
or Monod equation ((5) and (11)) and Hill equation ((6) and (12)) (Ferrell
and Xiong, 2001).

In the following, we will proceed using the simplified system (9)—(10). The
results obtained can be derived similarly for the more general case. The sim-
plifications mainly affect the exact dynamics rather than the steady state
behaviour.



3.3 Phase plane analysis

Equation (11) is the nullcline to (9), and (12) is the nullcline to (10). In steady
state, they also correspond to stimulus-response curves of two isolated sub-
systems, e.g. for (9) the steady state relation between the input (stimulus) Y,
and the output (response) X, is given by (11). The steady states of the com-
bined system (9)—(10) are characterized by the intersection of their nullclines
(11)—(12).

Y, Y,
1 . 1
0.8 .-' 0.8; k; = 0.005—
0.6 0.6 g
0.4 0.4 )
0.2 0.2 )
~k; = 0.05
I X - X
02 04 06 038 1 02 04 06 038 1
(a) X, and Y, nullclines. (b) X, nullclines.
Y, Y,
1 1
0.8 0.8
06! n=1—y 0.6
0.4 0.4
0.2 Y n=4 0.2
1 X B Xy
02 04 06 038 1 02 04 06 038 1
(c) Y, nullclines. (d) Time trajectories.

Figure 2. Phase plane analysis. Fig. 2(a) is a superposition of Fig. 2(b) and 2(c)
giving nullclines of (9) and (10), respectively. The numbered dots indicate steady
states for one set of parameters. Fig. 2(d) illustrates trajectories of the system.

The X, nullcline is depicted in Fig. 2(b) for k; = 0.01 in black and for k; =
0.005 and 0.05 in grey. The Y, nullcline is depicted in Fig. 2(c) for n = 2.5
in black and for n = 1 and 4 in grey. Note that the Y, nullcline for n = 1
and the black X, nullcline are symmetric with respect to the line Y, = X,
as k1 = ko. Fig. 2(a) shows the superposition of the two nullcline plots. The
intersections of the different nullclines provide the steady states as indicated
by the three dots for the black lines. We number the steady states along the
nullcline starting at the origin from 1 to 3 as indicated in the figure.



The classical approach for determining the local stability properties of steady
states is to calculate the eigenvalues of the linearised system or by finding
a Lyapunov function in a neighbourhood of the steady state. Alternatively,
simple graphical tests for phase plane plots exist for special system classes
(Piccardi and Rinaldi, 2002).

The black nullclines correspond to n = 2.5 and are typical for the case n > 1.
The grey dots in Fig. 2 correspond to stable steady states (1 and 3) and the
black dot corresponds to an unstable steady state, which is a saddle (2). Thus
the system is bistable. In most bistable systems, two stable steady states are
separated by a third unstable steady state (Tyson and Othmer, 1978). Fig. 2(d)
shows in black the unstable manifold of the saddle connecting the three steady
states and the stable manifold separating the two areas of attraction. In addi-
tion, trajectories for different initial conditions are depicted in grey. For n =1
however, there are at most two steady states, thus bistability is not possible,
irrespectively of the other parameters.

4 Ways of generating bistability

In Section 3, we derived the steady states and their stability properties for a
reaction system of two mutually activating proteases. If the reaction system is
modelled using mass action kinetics without cooperative steps, it is not able
to produce a bistable behaviour. Key in generating bistable behaviour was the
introduction of an ultrasensitive mechanism which was achieved through coop-
erativity. This leads to the deformation of a hyperbolic curve into a sigmoidal
curve.

In the following, we will outline additional ways of generating a bistable be-
haviour in similarly simple reaction schemes. Two well described cases are zero-
order ultrasensitivity (Section 4.1) and inhibitor ultrasensitivity (Section 4.2)
for which we directly show the simplified solution derived according to Sec-
tion 3.2. Additionally, more complicated mechanisms have been investigated
(Section 4.3).

4.1 Zero-order ultrasensitivity

Zero-order ultrasensitivity has so far mainly been studied in the context of
kinase/phosphatase reaction schemes (Goldbeter and Koshland, 1981, 1984;
Lisman, 1985). When the phosphatase kinetics are described by Michaelis-
Menten kinetics instead of mass action kinetics and the system is operating
near saturation, this can lead to an ultrasensitive stimulus-response curve

10



and thus to bistability in combination with positive feedback. Such a satu-
ration behaviour is not possible for protease cleavage reactions due to their
irreversibility. However, a closer comparison of the involved equations easily
reveals that the scenario can be obtained when introducing a saturation in
the degradation. To our knowledge there are no conclusive biological data
available, but a saturation in the degradation can be envisioned as the degra-
dation is usually carried out by the proteasome and either this machinery or
upstream tagging enzymes could become saturated. We evaluate a saturation
in the degradation of Y, assuming a constant concentration of the degrading
enzyme E,; and define k,,, = k6 - Eq/Y; and Ky = Ky6/Ys

km'}/r

o=k (1-Y,) X, — ="
(=) Ku +Y,

(13)

where (9) as the second ODE remains unchanged. This yields the nullclines
(11) and

ke X (1= Kpy) — Ky

Y,
" 2 k- X, * o
V- X (1= Kag) = k)2 +4- Koy - K - X2 (14)
2 ks X,

as well as a second negative and thus irrelevant solution. The Y, nullcline is
depicted in Fig. 3(c) for K3; = 0.01 in black and for Ky = 1 and 10~ in grey
(computed with X; = Y; = 1). Thus, although the biological interpretation
strongly differs from previously described cases, saturation effects in combina-
tion with positive feedback can also produce a bistable behaviour in the here
described setting. An introduction of a saturation in either of the cleavage
reactions will on the other hand not be able to produce a bistable behaviour
(data not shown).

4.2 Inhibitor ultrasensitivity

Inhibitor ultrasensitivity refers to the case where an inhibitor shapes the
stimulus-response curve sigmoidal (Ferrell, 1996; Thron, 1994). This setup
appears especially relevant for protease cascades as several specific inhibitors
have been described for various proteases, e.g. IAPs inhibiting caspases (Da-
nial and Korsmeyer, 2004) or Tissue Factor Pathway Inhibitor (TFPI) and an-
tithrombin regulating important steps in the blood clotting cascade (Dahlbéck,
2000). We evaluate an inhibition where the inhibitor /; binds to and thereby
inactivates the active protease Y,. We define the relative amount of complex
1Y, = 1Y)Y,, kf = ks - Y} and k, = kp3. The ODEs for the complex and for

11



Y, are given by
: I
1Y, = ky - (35 = 1Y,) - Yo = by IV, — kg 1Y, (15)
t
. I
Y,,:k;2~(1—Y,,—IY,,)~X,,—kd~Y,,—kf~(?t—IYr)-Yr+kb-IYT. (16)

t

Assuming the inhibitor and its complex to be in a quasi steady state, a sub-
stitution of 1Y, into (16) yields

k1 Yy - (ka+ ks X,)
(kp- Y, +ka+ k) - Y,

Y,=ky - (1=Y,) X, — kg Y, — (17)

and in addition we keep (9) unchanged. This yields nullclines described by
(11) and an equation for Y, provided in the supplement due to its length. As
can be seen in Fig. 3(b) (computed with X; =Y; = 3-I; = 1), this mechanism
can also efficiently produce a bistable behaviour. The Y, nullcline is depicted
for ky = 1 in black and for ky = 0.1 and 10 in grey. Compared to the cases
where bistability is achieved through cooperative or zero-order ultrasensitivity
the activation in the activated steady state is somewhat lower.

Y \C \G
1 , 1 , 1
0.8 : 0.8 R 0.8] Ku =1~

0.6 0.6

0.4 0.4

0.2 0.2

- X _ o X . J
02 04 06 08 17" 02 04 06 08 17" 02 04 06 08 1

(a) Cooperative. (b) Inhibitor. (c) Zero-order.

X

Figure 3. The three basic mechanisms to produce bistability: cooperative (3(a)),
inhibitor (3(b)) and zero-order (3(c)) ultrasensitivity.

4.8 Additional mechanisms and combinations

Of course, there are theoretically many additional system configurations that
can lead to bistability. Here we focused on positive feedback, however dou-
ble negative feedback or more indirect or implicit forms of feedback can also
yield a bistable behaviour (Ortega et al., 2002; Markevich et al., 2004; Angeli
et al., 2004). Recently, this was also described for the mitochondrial pathway
of apoptosis, where IAP proteins can inhibit both initiator and executioner
caspases (Legewie et al., 2006). For monotone systems it was shown that
any kind of feedback which in the sum is positive can give rise to a bistable
behaviour (Angeli et al., 2004). As can be seen in Figs. 2 and 3, all these
structural requirements are necessary but not sufficient for bistability. The
different parameters have to be balanced in order to generate bistability.

12



It is easy to envision that a combination of the different mechanisms can
produce steeper sigmoidal curves (data not shown). Also, if the forward and
the backward part of the reaction system contain a mechanism generating an
ultrasensitive response this balance is more easily achieved, e.g. if not only Y,
is inhibited by an inhibitor I; but also X, is inhibited by an inhibitor I, (data
not shown, compare Eifsing et al. (2004, 2005)).

5 Bifurcation and hysteresis

Instead of evaluating more complicated scenarios we rather would like to inves-
tigate more closely the dependence of the bistable behaviour on the parameters
in different ways. We choose the model considering inhibitors as introduced in
Section 4.2. The results are easily transferable to the other described scenarios.

Location and stability properties of steady states in dependence on parameters
are usually evaluated in bifurcation diagrams. Such diagrams can be seen in
Fig. 4. However, the qualitative picture can already be derived from Fig. 3(b).
For example, we fix the solid black line and shift the dotted black line by
changing k; (as indicated for two values by the dotted grey lines in Fig. 2(b))
corresponding to the positive feedback activation of X by Y. For decreasing
k1, steady state 3 becomes smaller and the steady state 2 becomes larger until
they finally meet and directly afterwards disappear (saddle-node bifurcation).
If the feedback is too weak, a high activation state of the proteases cannot
be sustained. On the other hand, for increasing k;, steady state 2 becomes
smaller until it finally reaches steady state 1 with which it exchanges its sta-
bility properties, before disappearing into the non-relevant negative orthant
(transcritical bifurcation). If the feedback is too strong even the weakest acti-
vation causes the almost complete activation of the proteases. This behaviour
is more quantitatively described in Fig. 4(a) where stable steady states are de-
picted as solid lines and unstable steady states as dashed lines. The physically
irrelevant areas are hatched.

So far we considered that an external stimulus affects the initial conditions of
the systems without explicitly considering the stimulus, e.g. X, is produced
by some impulse stimulus. We now explicitly take the input into account and
consider the stimulation of the system by a constant external stimulus. As can
be seen in Fig. 4(b) the bifurcation diagram changes. The steady state 1 is now
not always at zero but dependent on the external stimulus. The bifurcation
diagram basically corresponds to a steady state response curve. When we
slowly increase U the system response also rises slowly as steady state 1 rises
slowly. Once steady state 1 vanishes, the system jumps into steady state 3
and then again slowly rises further. If we now slowly lower U we remain in
steady state 3 and would only return to steady state 1 for negative U, i.e.

13
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Figure 4. Bifurcation analysis. Physically irrelevant areas are hatched. In 4(a) — 4(c)
solid lines depict stable, dashed lines unstables steady states. In 4(d) the bistable
region is filled in grey.

the hysteresis is large. If we assume U > 0, the system is basically trapped
in steady state 3 — corresponding to a bistable behaviour of the system with
U = 0. The bifurcation diagram shows two saddle-node bifurcations. If we
now choose a smaller k; as done for Fig. 4(c) we find the same behaviour but
with a smaller hysteresis allowing the system to jump back to steady state 1
for small but positive values of U. The system is still bistable for some values
of the constant input U but is not irreversibly trapped for U > 0. Therefore,
the system with U = 0 is also not bistable (compare Fig. 2(a) and Fig. 3(b)
for k; = 0.005).

Fig. 4(d) provides a two parameter bifurcation diagram. The two branches
do not correspond to steady states any more, but indicate the bifurcation
points as discussed before. The lower branch represents the left saddle-node
bifurcation and the upper branch the right saddle-node bifurcation (compare
to Figs. 4(b) and 4(c)). Between those branches, i.e. in the upper left part, the
system is bistable, and it is monostable otherwise. As can be seen, the system
is bistable for a large range of k; for U = 0 but there is only a small range
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of ky allowing for a reversible switching in dependence on U, i.e. where both
bifurcation events occur for U > 0.

6 The influence of zymogenicity

So far we have assumed that the inactive form, also called pro-form or zy-
mogen, of the protease does not possess any catalytic activity. However, it is
well know that most zymogens have a residual activity. This activity is called
zymogenicity and is defined as

. activity of processed protease
zymogenicity =

— (18)
activity of zymogen

with known values ranging from 2 to 10° for different proteases (Stennicke
and Salvesen, 1999). Next, we would like to evaluate the influence of this
disturbance onto the system behaviour. To simplify the perturbation, we only
consider that X has a zymogen activity. The ODE for Y, for the cooperative
model can be modified according to the definition of zymogenicity to give

1
z
Proceeding accordingly for the different ODEs for Y, ((13) and (17)) and again

performing a phase plane analysis shows that this disturbance can affect the
bistable behaviour of the system.

Ye=ky (1=Y,) - X+ = ky-(1=Y,) - (1= X,)" —ka-Y,. (19

Yr Yr Yr
1 . 1 . 1
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— Xr . Xr
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(a) Cooperative. (b) Inhibitor. (¢c) Zero-order.

Figure 5. The three basic mechanisms to generate bistability in the presence of zymo-
gen activity: cooperative (Fig. 5(a)), inhibitor (Fig. 5(b)) and zero-order (Fig. 5(c))
ultrasensitivity. All plots show the X, nullcline in dashed black. The respective Y,
nullclines are depicted for z = oo (no zymogen activity) as solid grey lines. These
are buried by the solid black lines in Fig. 5(b) and 5(c) giving the Y, nullclines for
z =100 and z = 10.

Fig. 5 shows how the Y, nullclines are shifted when increasing zymogen ac-
tivity (corresponding to decreasing zymogenicity) from z = oo (grey line),
corresponding to the previously evaluated case with no zymogen activity, to
z =100 and z = 10 (black lines). For the inhibitor (Fig. 5(b)) and the zero-
order setup (Fig. 5(c)) the shift for z = 100 is so minor that the nullclines
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bury the z = oo nullcline. Clearly, the cooperative case is severely affected

(Fig. 5(a)).

7 Discussion

In this study we reviewed how a bistable behaviour can be generated in a small
network of interacting proteins. Specifically, we chose two mutually activating
proteases as an application example, which despite their widespread use in
biological signalling networks have so far received little attention with respect
to the generation of a bistable switch. The irreversibility of the involved re-
actions, as well as the need to consider protein turnover, render the example
special compared to other well studied systems. Interestingly, the turnover
can also be interpreted as a substitute for a back reaction, e.g. whereas in the
classical case of zero-order ultrasensitivity the back reaction has to be close to
saturation in order to generate bistability, the same has to hold for the degra-
dation in our case. We have focused on two interacting proteases producing
a bistable behaviour. It is easy to envision that even a single protease can
generate a bistable switch similar to kinases (Ferrell and Xiong, 2001), when
an autocatalytic mechanisms is introduced.

We employ phase plane and bifurcation analysis to illustrate the bistable be-
haviour from different viewpoints. Phase plane analysis generally relies on the
reduction of the reaction system to second order. This reduction is not always
possible. One interesting new concept routed in the theory of monotone sys-
tems is readily applicable to larger systems as has already been mentioned
(Angeli et al., 2004; Angeli, 2006). However, the applicability of the concept is
also restricted to special classes of systems. Both these graphical methods are
mainly meant to get a qualitative picture, whereas bifurcation studies can be
efficiently used to evaluate the parameter range for which the system actually
does display a bistable behaviour. Bifurcation studies generally rely on con-
tinuation methods and numerical efficiency is the main limit. These studies
can be performed in dependence on one or two parameters. Theoretically, the
number of dimensions can be extended. The main restrictions are computa-
tional power and our visual conception. We can easily extend these analysis
to three dimensions by solving the system of equations under the steady state
condition for one variable, if the remaining equation has a special form (Eifing
et al., 2004).

Another approach is to extract the bistability margins, i.e. basically the bi-
furcations points, for single parameter changes. This method can also yield
measures for defining the robustness of the system (Ma and Iglesias, 2002).
However, it relies on a reference parameter set. This reference parameter set
has a strong impact on the outcome while it is usually not well defined. Re-
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cently, we have shown how a Monte Carlo based approach can provide com-
parable robustness measures without this limiting requirement (Eifting et al.,
2005). However, the phase plane analysis can already outline principle ro-
bustness features of the here evaluated models. The robustness of the three
models compared in Fig. 3 appears to mainly rely on the steepness of the ul-
trasensitive reaction component. In the models described here, this steepness
is mainly depending on the number of molecules cooperating and their bind-
ing characteristics, the strength of the inhibitors binding or the saturation
level as indicated by the Michaelis-Menten constant, respectively. However,
the steepness is also affected by the chosen set of approximations (Goldbeter
and Koshland, 1981; Bliithgen et al., 2006). In principle, none of the investi-
gated mechanisms appears especially robust compared to another, although
Bagci et al. (2006) report that the cooperative mechanism outperforms the
inhibitor mechanism in a similar setup regarding the robustness of bistable
behaviour with respect to parameter variations. When considering a class of
perturbations so far mostly ignored, especially the cooperative setup appears
very fragile (Fig. 5). We are therefore currently closer investigating the ro-
bustness aspects of the here described models.

From a biological point of view, all three mechanisms appear reasonable. Al-
though there are several evidences, further experiments are needed to prove
the existence of a protease switch within the cell (Eifing et al., 2004). Which
mechanism is employed by nature and for what reason also awaits experimen-
tal elucidation. Clearly, many proteases are know to come along with specific
inhibitors, e.g. caspases and IAPs. However, sometimes cooperative mecha-
nisms appear to be involved in their activation, e.g. cytochrome c release and
apoptosome assembly in the mitochondrial apoptotic pathway (Rehm et al.,
2006). Likely, it will often turn out to be a combination of different mechanisms
which ensure a robust and safe switch in vivo.

Supplementary information

Supplementary information is available at
www.sysbio.de/projects/tnf/biosystems06 /.
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