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Abstract— Nonlinear dynamical systems can show a variety
of different qualitative behaviors depending on the actual
parameter values. As in many situations of practical relevance
the parameter values are not precisely known it is crucial to
determine the region in parameter space where the system
exhibits the desired behavior.

In this paper we propose a method to compute an ap-
proximative, analytical description of this region. Employing
Markov-chain Monte-Carlo sampling, nonlinear support vec-
tor machines, and the novel notion of margin functions, an
approximative classification function is determined.

The properties of the method are illustrated by studying the
dynamic behavior of the Higgins-Sel’kov oscillator.

I. INTRODUCTION

Nonlinear dynamical systems can show a large variety of
different types of dynamic behavior [2]. For many applica-
tions it is of interest to check whether a dynamical system has
a certain property and, more interestingly, how this property
depends on the system parameters. A classical example for
such a property is the stability of an equilibrium point, but
also more complex questions, such as whether a system state
can reach a particular threshold from a given initial condition,
are relevant for example in safety considerations.

While for a single given parameter vector it may be com-
putationally inexpensive to check whether the system has a
certain property or not, determining the global characteristics
of the parameter space with respect to the property of interest
is in general hard. However, the problem of determining
this characteristic is highly relevant for analysis or design
aspects, as it can give insight into to the system’s robustness
properties [6]. Also for identification purposes classification
of parameter regions is helpful as they contain information
about the relevance of certain parameters.

Efficient methods for solving such general classification
problems for nonlinear systems only exist for very restricted
problem setups. One example is the computation of codi-
mension 1 bifurcation surfaces in two and three dimensional
parameter spaces [11], for which continuation methods can
be employed [9]. For higher dimensional parameter spaces
no efficient methods are available.

In this paper we pursue the goal of constructing an approx-
imative analytic classification function to compute the system
property for new parameter vectors. This method will also
be applicable in cases where no analytic rule for determining
the parameter dependent property exists. Furthermore, this
approximative classification function can be used to compute
an approximation of the hypersurface separating regions in
the parameter space which lead to qualitatively different
dynamic properties. The resulting approximation can be used

for a first robustness analysis or serve as starting point for
computationally more demanding methods.

For computing the approximative classification function
we propose to combine Markov-chain Monte-Carlo (MCMC)
sampling and nonlinear support vector machines (SVM) with
the concept of margin functions. Given a certain property
and a parameter value, a margin function quantifies the
extent to which this property is present. We will show that
using MCMC sampling together with an appropriate margin
function allows to obtain a high sample density close to the
separating boundary. This fact facilitates the computation of
a good approximative classification function using SVMs.

The paper is structured as follows. In Section II the prob-
lem of deriving a classification function is described more
precisely. In Section III the definition of margin functions
is given and the application of nonlinear SVM, and MCMC
sampling is presented. As a specific example of a margin
function the concept of loop breaking is presented in Section
IV. In Section V the method is then applied to study two
properties of a model of the Higgins-Sel’kov oscillator. The
paper concludes with a summary in Section VI.

II. PROBLEM DESCRIPTION

In the following we consider systems of nonlinear differ-
ential equations,

Σ(θ) : ẋ = f(x, θ), x(0) = x0(θ), (1)

in which x(t, θ) ∈ Rn is the state vector and θ ∈ Ω ⊂ Rq is
the parameter vector. The set Ω of admissible parameter val-
ues is open and bounded. In order to guarantee existence and
uniqueness of the solution x(t, θ) we assume that the vector
field f : Rn × Rq → Rn is locally Lipschitz. Additionally,
x0 : Rq → Rn is considered to be smooth.

Besides the system class, the properties of interest are
restricted as well. We only consider properties for which
there exists a (q−1) – dimensional manifold that separates Ω
into regions where the property is present and regions where
it is absent. In this case, we can subdivide the parameter set
Ω in three disjunct subsets,

Ω = Ω1 ∪ Ω0 ∪ Ω−1, (2)

where Ω1 is an open set such that Σ(θ) has the property of
interest for θ ∈ Ω1, Ω−1 is an open set such that Σ(θ) does
not have the property of interest for θ ∈ Ω−1, and Ω0 is a
(q − 1) – dimensionally manifold.

In case the property of interest is local exponential stability
of an equilibrium point xs(θ), Ω1 is the set of all parameters
for which xs(θ) is locally exponentially stable, Ω−1 the set
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of parameters for which xs(θ) is unstable, and Ω0 the set of
parameters for which xs(θ) is marginally stable.

III. COMPUTATION OF APPROXIMATIVE
CLASSIFICATION FUNCTION

In this section it is shown how nonlinear SVM, MCMC
sampling, and suitable margin and classification functions
can be used to find an explicit analytic approximative clas-
sification function for the qualitative system properties.

A. Margin Function

An essential element of the approach developed in this
work is the construction of a suitable margin function for
the subdivision of Ω into the subsets Ω1, Ω−1, and Ω0.

Definition 1: A continuous function MF : Rq → R is
called a margin function for the system property of interest,
if MF(θ) > 0 for θ ∈ Ω1, MF(θ) < 0 for θ ∈ Ω−1, and
MF(θ) = 0 for θ ∈ Ω0.

Based on the margin function the classification function

CF : Rq → {−1, 0, 1} : θ 7→ sgn(MF(θ)), (3)

is defined, such that each parameter vector θ can be charac-
terized by the relation θ ∈ ΩCF(θ).

As an example, consider the property that the norm of
the trajectory starting at x0(θ) passes a certain thresh-
old, i.e. ∃t ∈ [0, tmax] : ||x(t, θ)||2 > γ. For
this problem, a possible margin function is given by:
MF(θ) = maxt∈[0,tmax] ||x(t, θ)||2 − γ.

In the following, margin and classification functions are
employed to sample and classify points in the parameter
space.

B. Nonlinear Support Vector Machine

Let us assume that a set of S points in the parameter
space, {θ1, . . . , θS}, and a classification function CF are
given. Then a set of classified points,

T =
{(
θ1, c1

)
, . . . ,

(
θS , cS

)}
, (4)

with class ci = CF(θi) can be derived. This set is called
training set. Based on the generated training set T a nonlinear
SVM [4] is learned. The process of learning the nonlinear
SVM consists hereby of two main steps [4].

The first step is a mapping of the training set T from the
input space into a feature space of higher dimension,

Φ(T ) =
{(

Φ(θ1), c1
)
, . . . ,

(
Φ(θS), cS

)}
, (5)

illustrated in Figure 1. This feature space is a Hilbert space
of finite or infinite dimension [4] with coordinates defined
by Φ : Rq × R 7→ Rq∗ × R, where q∗ is the dimension of
the feature space. After the transformation Φ of the data into
the feature space a linear separation of the data is performed.
Therefore, the optimization problem,

min
w,b,ξ

1
2
wTw + C

S∑
i=1

ξi

s.t. ci
(
wTΦ(θi) + b

)
≥ 1− ξi, i = 1, . . . , S,

ξi ≥ 0, i = 1, . . . , S,

(6)

input space

θ1

θ2

Φ

feature space

Φ1(θ)

Φ2(θ)

Fig. 1. Visualization of the mapping Φ from input space to feature space
(class = 1: +, class = -1: o) . Left: Nonlinearly distributed data in the input
space which do not allow a linear separation. Right: Samples transformed
in the feature space where they can be separated linearly, and normal vector
w (→) of the separating hyperplane. Support vectors of the separating
hyperplane are encircled (o). Only data points close to separating hyperplane
influence the classification.

is solved. Thereby, w denotes the normal vector of the sep-
arating hyperplane and b the offset of the plane, as depicted
in Figure 1. The first term of the objective function, 1

2w
Tw,

yields a maximization of the margin between the separating
hyperplane and the data points, whereas the second term,∑S
i=1 ξ

i, penalizes mis-classifications. The weighting of the
different terms can be influenced via C. The constraints are
that all data points (Φ(θi), ci) are correctly classified within
a certain error ξi.

To solve the constraint optimization problem (6) its dual
problem is derived [4],

min
λ

S∑
i=1

λi −
1
2

S∑
i=1

S∑
j=1

λiλjc
icjΦT(θi)Φ(θj)

s.t.
S∑
i=1

λic
i = 0, 0 ≤ λi ≤ C, i = 1, . . . , S,

(7)

in which λ ∈ RS+ is the vector of Lagrange multipliers. Given
the solution of (7), w and b can be determined (see [4]), and
used to derive the approximative classification function

aCF(θ) = sgn
(
wTΦ(θ) + b

)
= sgn

(
S∑
i=1

λic
iΦT(θi)Φ(θ) + b

)
.

(8)

Given this approximative classification function the approx-
imations,

Ω̂±1 =
{
θ ∈ Ω| ± (wTΦ(θ) + b) > 0

}
, (9)

Ω̂0 =
{
θ ∈ Ω|wTΦ(θ) + b = 0

}
, (10)

can be defined, which are analytical even if CF(θ) was not
an analytic function.

Remark 1: Note that from (8) one can see that only points
θi in the training set T for which λi 6= 0 contribute to the
classification of a new point θj . Points θi for which λi 6= 0
are called support vectors. These are the points which are
close to the separating hypersurface [4].

From this one can conclude that points which are far away
from the separating hypersurface are not of interest for the
computation of the nonlinear SVM and a high sample density
close to the separating hypersurface is desirable.
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C. Markov-chain Monte-Carlo Sampling

As outlined in the previous section, obtaining a good
approximation of the separating hypersurface requires a large
portion of the sample {θi} to be close to the interface.
These sample member can then function as support vectors.
Sampled points far away from the interface are also needed
but their number can be smaller.

Achieving a high sample density close to the separat-
ing hypersurface requires sophisticated sampling techniques.
Classical Monte-Carlo sampling approaches or latin hyper-
cube sampling would yield an equal spread of the sampled
points in the whole parameter region Ω. Thus, the sample
size necessary to obtain a good resolution of the interface
would be very large. To achieve a sampling targeted to
the separating hypersurface, we propose to employ Markov-
chain Monte-Carlo sampling [8] in combination with an
acceptance probability related to the margin function MF(θ).

MCMC sampling approaches are two-step methods. In the
first step a new parameter vector θi+1 with

θi+1 ∼ J(θi+1|θi) for θi+1, θi ∈ Ω (11)

where θi is the current parameter vector and J(θi+1|θi)
a transition kernel. The kernel J(θi+1|θi) is a probability
density and for this work we chose a multi-variate Gaussian,

J(θi+1|θi) =
1

(2π)
q
2 (det(Σ))

1
2

exp
(
−1

2
∆θTΣ−1 ∆θ

)
with ∆θ = θi+1− θi and positive definite covariance matrix
Σ ∈ Rq×q . Also define the function D : Rq → R which maps
the margin function to a suitable measure of the distance to
the separating hypersurface. In this work D is defined by

D(θ) =

{
exp

(
−MF2(θ)

σ2

)
for θ ∈ Ω

0 otherwise,
(12)

hence, takes its maximum on the separating hypersurface
(MF(θ) = 0), and is zero outside Ω. The parameter σ is a
design parameter.

In the second step, the proposed parameter vector θi+1 is
accepted with probability

pacc = min
{

1,
D(θi+1)

D(θi)

}
. (13)

If the parameter θi+1 is accepted i is updated. Otherwise,
a new parameter vector θi+1 is proposed. This procedure
is repeated till the required samples size, S, is reached. The
approach which is used to generate a sample from D(θ) with
θ ∈ Ω is shown in Algorithm 1.

Employing this algorithm a series of parameter vectors θi

and corresponding qualitative properties ci is computed. This
set can then be used as training set for the nonlinear SVM.

If the margin function MF and Ω0 satisfy some additional
conditions, Theorem 1 guarantees that a desired percentage
of the MCMC sample will be contained in an ε neighborhood
of Ω0, defined as

Ωε :=
{
θ ∈ Ω|∃θ̄ ∈ Ω0 : ||θ − θ̄||2 ≤ ε

}
, (14)

Algorithm 1 MCMC sampling of parameter space.

Require: distance D(θ), initial point θ(1) ∈ Ω.
Initialization of the Markov-chain with θ(1).
while i ≤ S do

Given θi, propose θi+1 ∈ Ω using J(θi+1|θi).
Determine D(θi+1) and ci+1 = CF(θi+1).
Generate uniform random number r ∈ [0, 1].
if r ≤ min

{
1, D(θi+1)

D(θi)

}
then

i = i + 1.
end if

end while

(see Figure 2). Let a(θ) := sgn(MF(θ)) · min
θ̄∈Ω0

||θ − θ̄||2 be

the signed distance of a point θ to the hypersurface Ω0, then
Ωε can also be written as

Ωε = {θ ∈ Ω | ||a(θ)|| < ε}. (15)

Theorem 1: Assume that Ω0 ⊂ Ω is a regular manifold
and that the margin function MF is bounded by

(m̂a(θ)−MF(θ))a(θ) ≥ 0, ∀θ ∈ Ωε
||MF(θ)|| ≥ γ, ∀θ ∈ Ω \ Ωε,

(16)

where the bounds m̂, γ > 0 satisfy

m̂2 ≤ 3
σ2

ε2

[
1− 1− δ

δ

||Ω|| − ||Ωε||
||Ωε||

exp
(
−γ

2

σ2

)]
, (17)

for some ε, 0 < ε � 1, and δ > 0, with ||Ω|| the Lebesgue
measure of Ω. Then, for S � 1 the expected number of
sampled points contained in Ωε is greater than (1− δ)S.

The conditions on MF are illustrated in Figure 3.
Proof: Given a continuous function D(θ) such that

∀θ ∈ Ω : D(θ) > 0, it is known [8] that for S � 1 and
an appropriate transition kernel J the expected value of the
probability of finding a sampled point θi in Ωε approaches

Pr(θi ∈ Ωε) =
∫

Ωε

D(θ)dθ
/∫

Ω

D(θ)dθ. (18)

Thus, Pr(θi ∈ Ωε) ≥ (1− δ) is equivalent to∫
Ωε

D(θ)dθ ≥ 1− δ
δ

∫
Ω\Ωε

D(θ)dθ. (19)

To proof that (19) holds supposed Theorem 1 is satisfied,
the diffeomorphism Γ : S × [−ε, ε] → Ωε : (s, a) 7→ θ
and its inverse Γ−1 are introduced, as depicted in Figure 2.
Employing these and integrating by substitution we can write∫

Ωε

D(θ)dθ =
∫
S

∫ ε

−ε
D(Γ(s, a))

∣∣∣∣det
(

∂Γ
∂[s, a]

)∣∣∣∣ da ds, (20)

with Γ(S × [−ε, ε]) = Ωε. Note that Γ and Γ−1 exist as we
have assumed Ω0 to be a regular manifold. This fact further
allows to choose Γ such that ∂Γ

∂[s,a] is an orthogonal matrix
for small a. Therefore, with ε� 1, on the integration domain
we have

∣∣∣det
(

∂Γ
∂[s,a]

)∣∣∣ = 1, resulting in∫
Ωε

D(θ)dθ =
∫
S

∫ ε

−ε
exp

(
−MF2(Γ(s, a))

σ2

)
da ds. (21)
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a

s

Fig. 2. Illustration of the mappings Γ and Γ−1 for the parameter -
coordinate system (θ-plane) to the manifold - distance from manifold -
coordinate system (s-a-plane). a describes the distance from Ω0 and is
positive for Γ(s, a) ∈ Ω1 and negative for Γ(s, a) ∈ Ω−1.

MF(θ)

a(θ)
ε-ε

γ

-γ

m̂a m̌a

Fig. 3. Illustration of γ and the slopes m̂ and m̌.

If the slope of MF(θ) along the a-direction is now
upper bounded by m̂ on the interval [−ε, ε], and as
exp(−x2) ≥ 1− x2 ∀x, one obtains∫

Ωε

D(θ)dθ ≥
∫
S

∫ ε

−ε
exp

(
−m̂

2a2

σ2

)
da ds (22)

≥
∫
S

∫ ε

−ε

(
1− m̂2a2

σ2

)
da ds (23)

≥ ||Ωε||
(

1− 1
3
m̂2ε2

σ2

)
. (24)

Next, the right hand side of (19) is upper bounded. Therefore,
the lower bound γ of the absolute value of MF(θ) in Ω \Ωε
is employed, resulting in∫

Ω\Ωε
D(θ)dθ ≤

∫
Ω\Ωε

exp
(
−γ

2

σ2

)
dθ (25)

≤ (||Ω|| − ||Ωε||) exp
(
−γ

2

σ2

)
. (26)

Plugging (24) and (26) into (19) yields (17).
As it can be seen from Theorem 1, for a suitable choice

of the MF it can be guaranteed that a certain percentage of
the sample is contained in Ωε. Unfortunately, this does not
ensure that the separating hypersurface is approximated well
everywhere. Therefore, also the distribution of the sample
along Ω0 has to be considered. For this purpose, let us
introduce the ε neighborhood of a point θ̄i ∈ Ω0,

Ωε(θ̄i) :=
{
θ ∈ Ω

∣∣‖Γ−1(θ)− Γ−1(θ̄i)‖∞ ≤ ε
}
,

in transformed coordinates, where Γ is defined as before.
Theorem 2: Assume the conditions of Theorem 1 hold,

then the expected number of samples in Ωε(θ̄1) and Ωε(θ̄2),
θ̄1, θ̄2 ∈ Ω0, differs at most by a factor of β ≥ 0, i.e.,

∀θ̄1, θ̄2 ∈ Ω0 : Pr(θi ∈ Ωε(θ̄1)) ≤ (1 + β)Pr(θi ∈ Ωε(θ̄2)),
(27)

if

m̂2 − m̌2 ≤ σ2

ε2
ln(1 + β), (28)

with m̂ and m̌ being slope bounds of MF(θ) (see Figure 3).

Proof: To prove Theorem 2, note that from (28) it
follows that

∀a ∈ [−ε, ε] : m̂2 − m̌2 ≤ σ2

a2
ln(1 + β). (29)

By applying exp(·) to (29) and integrating both sides over
a and s we obtain∫

S1

∫ ε

−ε
exp

(
−m̌

2

σ2
a2

)
da ds

≤ (1 + β)
∫
S2

∫ ε

−ε
exp

(
−m̂

2

σ2
a2

)
da ds,

(30)

where Si =
{
s
∣∣||s− Γ−1(θ̄i)||∞ ≤ ε

}
. With (12) it follows

that∫
S1

∫ ε

−ε
D(Γ(s, a))da ds ≤ (1 + β)

∫
S2

∫ ε

−ε
D(Γ(s, a))da ds,

which with a change of variables and Pr(θi ∈ Ωε(θ̄j)) =∫
Ωε(θ̄j)

D(θ)dθ finally yields (27).
Theorems 1 and 2 provide conditions on the margin

function MF which guarantee that the separating interface
is well approximated by the MCMC sample {θi}.

IV. MARGIN FUNCTION BASED ON FEEDBACK
LOOP BREAKING

A suitable margin function for classifying stability and
instability of steady states can be constructed via the feed-
back loop breaking approach proposed in [12]. Thereby, we
associate with (1) a control system

ẋ = g(x, u, θ)
y = h(x, θ)

(31)

such that g(x, h(x, θ), θ) = f(x, θ). Note that xs(θ) is
a steady state of (31) for the constant input us(θ) =
h(xs(θ), θ). According to the procedure outlined in [12], we
compute a linear approximation of (31) around the steady
state xs(θ) with the transfer function

G(θ, s) = C(θ)(sI −A(θ))−1B(θ), (32)

with A(θ) = ∂g
∂x (xs(θ), us(θ), θ), B(θ) =

∂g
∂u (xs(θ), us(θ), θ), and C(θ) = ∂h

∂x (xs(θ), us(θ), θ).
The realness locus of G is defined as

R(θ) = {ω ≥ 0 | G(θ, jω) ∈ R}. (33)

Define α ∈ N by

α = |p+ − p− + z− − z+|, (34)

where p+ (p−) is the number of poles of G(θ, ·) and z+ (z−)
is the number of zeros of G(θ, ·) in the right (left) complex
half plane. Following [12], we say that R(θ) is minimal,
if it has α elements in case α is odd, and α − 1 elements
otherwise.

We make the following assumptions on the open-loop
system (31) and the associated transfer function G:
• A(θ) is asymptotically stable for all θ ∈ Ω.
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• The realness locus R(θ) of G is minimal for all θ ∈ Ω.
• The numerator and denominator polynomials of G(θ, s)

are of constant degree with respect to s for all θ ∈ Ω.
The following result then follows immediately from Theo-
rem 3.5 in [12].

Proposition 1: Under the above assumptions, the Jacobian
∂f
∂x (xs(θ), θ) of (1) has eigenvalues with positive real part,
if and only if

G(θ, jωc) > 1, (35)

where ωc = arg maxω∈R(θ)G(θ, jω).
This result immediately suggests to use

MF(θ) = G(θ, jωc)− 1, (36)

with ωc = arg maxω∈R(θ)G(θ, jω), as a margin function
for the considered classification problem, with the resulting
classification function

CF(θ) =


−1 for G(θ, jωc) < 1

1 for G(θ, jωc) > 1
0 for G(θ, jωc) = 1.

(37)

Note that according to the results in [12], G(θ, jωc) = 1 is
equivalent to Acl(θ) having an eigenvalue jωc on the imag-
inary axis, while G(θ, jωc) < 1 is equivalent to asymptotic
stability of Acl(θ). Thus, the proposed classification function
CF indeed structures the parameter space into regions of
instability and stability, with bifurcations occurring on the
boundary.

V. HIGGINS–SEL’KOV OSCILLATOR

To illustrate the properties of the proposed method the
qualitative behavior of the Higgins-Sel’kov oscillator [10] is
analyzed in this section. This system describes one elemen-
tary step in glycolysis [3]. The Higgins-Sel’kov oscillator
system can exhibit a stable steady state or an unstable steady
state coexisting with a stable limit cycle, depending on
parameter values. The model we consider in this work is
taken from [7] and a basal conversion rate of S to P is
added yielding

Ṡ = θ1 − θ2P
2S − θ3S

Ṗ = θ2P
2S − θ4P + θ3S.

(38)

The parameters θ3 and θ4 are fixed to θ3 = 0.04 and θ4 = 2,
whereas the parameters [θ1, θ2]T ∈ Ω, with Ω = (0, 5)2 are
considered.

A. Stability Analysis and Existence of a Stable Limit Cycle

The first property we want to analyze is the stability of
the unique steady state xs(θ) = [Ss(θ), Ps(θ)]T , with

Ss(θ) = (θ1θ
2
4)/(θ2θ

2
1 + θ3θ

2
4), Ps(θ) = θ1/θ4. (39)

As system (38) is two dimensional, all trajectories remain
bounded, and xs(θ) is the unique steady state, according to
the theorem of Poincaré-Bendixson it can be concluded that
a limit cycle exists if the steady state xs(θ) is unstable [5].

Therefore, a margin function MF(θ) is chosen employing the
loop breaking method introduced in Section IV, with

g(x, u, θ) =
[

θ1 − θ3S − θ2Su
2

θ3S − θ4P − θ2Su
2

]
, h(x, θ) = P.

(40)
For the MCMC sampling, the parameters Σ = 0.15 I2,
with I2 being the 2 × 2 identity matrix, and σ2 = 1/40
were chosen. In total 5000 parameter vectors have been
proposed, 1958 of which have been accepted and used for
the calculation of the approximative classification function
aCF(θ). The classification error of this training set was 0.4%.

To evaluate the proposed scheme, the obtained result is
compared to the analytical solution. Therefore, determinant
and trace of the Jacobian J |(xs(θ),θ) of (38) at steady state
xs(θ) are considered. As det(J |x̄) is always positive, the
steady state xs(θ) is stable iff tr(J |(xs(θ),θ)) is negative,
and unstable if it is positive. This yields the two separating
hypersurfaces (bifurcation surfaces),

SH1 : θ2 = ((θ6
4 − 8θ3θ

5
4)

1
2 − 2θ3θ

2
4 + θ3

4)/(2θ2
1)

SH2 : θ2 = −((θ6
4 − 8θ3θ

5
4)

1
2 + 2θ3θ

2
4 + θ3

4)/(2θ2
1).

(41)

As visible in Figure 4 (left) the margin function derived
from loop breaking yields that a large percentage of the
sample is close to the separating hypersurface Ω0. Also
sample densities in different areas along Ω0 are comparable.
Using these samples as training set for the nonlinear SVM
[1] with Gaussian kernel functions yields an almost perfect
agreement between the analytical and the approximated
solution of the separating hypersurface. The quality of the
approximative classification function is evaluated using 1000
uniformly distributed sample points θi ∈ Ω, which were not
contained in the training set. Thereby, 99.60% of the samples
were classified correctly and the computation times using
the analytical and the approximative (SVM) classification
functions were in the same order of magnitude.

Remark 2: Note that the proposed method is a global
method as different branches of the separating hypersurface
are found. This is not possible using continuation methods.

B. Amplitude of Stable Limit Cycle Oscillation

As a second example we study the amplitude of the oscil-
lation of S on the limit cycle L. This parameter dependent
amplitude A(θ) is defined as

A(θ) =
1
2

(
max
t̂∈τ(θ)

SL(t̂, θ)− min
ť∈τ(θ)

SL(ť, θ)
)
, (42)

in which SL(t, θ) is the time course of S on the limit cycle
and τ(θ) = [0, tL(θ)], where tL(θ) denotes the parameter
dependent period of the limit cycle oscillation. For the
amplitude of the limit cycle no analytic solution exists and
therefore it is computed numerically. For parameter vectors
θ resulting in a stable steady state we define A(θ) = 0.

The property we are interested in for the remainder of this
section is whether or not A(θ) ∈ [3.5, 5]. For the MCMC
sampling the margin function

MF(θ) = −(A(θ)− 3.5)(A(θ)− 5), (43)
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Fig. 4. Classification of parameters in the set [θ1, θ2]T = (0, 5)2 and fixed parameters θ3 = 0.04 and θ4 = 2 with respect to different properties of
the Higgins-Sel’kov oscillator. Left: Sample (stable (•) and unstable (•) steady states) generated using the MCMC sampling and used for the estimation
approximative classification function (—), and analytical solution of the bifurcation surfaces (– –). Middle: Sample (A /∈ [3.5, 5] (•) and A ∈ [3.5, 5] (•))
generated using the MCMC sampling and used for the estimation approximative classification function (—). It can be seen that some samples members
are not classified correctly and that in the lower left part blue samples are missing. Right: Illustration of amplitudes A of the limit cycle oscillation as
function of θ1 and θ2. An in-depth analysis reveals that the margin function is not differentiable at the bifurcation manifold (Theorems 1 and 2 are not
applicable) which complicates the sampling.

has been selected. This margin function is zero for A(θ) =
3.5 and A(θ) = 5, positive for A(θ) ∈ (3.5, 5), and negative
otherwise. During the MCMC sampling 6000 parameter vec-
tors were proposed, with Σ = 0.15 I2 and σ2 = 1/10. Out
of these 6000 samples 2449 parameter vectors were accepted
and used to learn the nonlinear SVM. The classification error
for this training set was 2.53%. These training points and
the resulting separating hypersurface are shown in Figure 4
(middle). It can be seen that the sample concentrates in
some parameter regions and are not equally distributed along
the interface. The reason for this behavior can be seen in
Figure 4 (right). For parameters θ2 > 3 and low values of
θ1, the norm of the gradient ∂A

∂θ becomes very large and
the set Ω1 becomes very pointed. Therefore, only a small
portion of the sample reachs this region and the quality of
the approximation is worse in this area. A problem similar
to this occurs in the region θ1 < 0.5 and θ2 < 1. Here, no
parameter vectors in Ω−1 were drawn. The reason for this is
again the large norm of the gradient of A(θ), and thus also
in MF due to the disappearance of the limit cycle. Hence,
the conditions of Theorems 1 and 2 to guarantee a good
sampling of the interface are not fulfilled.

However, despite of these sampling problems the quality
of the approximative classification function is satisfying. Out
of 1000 uniformly distributed parameter vectors θi ∈ Ω
which are not contained in the training set, only six were
mis-classified. Furthermore, as for this property no analytical
relation exists, the computation time required to classify
these 1000 samples is three orders of magnitude smaller than
computing the property via simulation.

VI. CONCLUSIONS

In this work a novel method to determine a simple ap-
proximative classification function is presented. Employing
this function, the classification of a point is simplified to
an evaluation of an explicit analytic function. It could be
shown that this function can be computed efficiently using
margin function, MCMC sampling targeted to the separating
hypersurface, and support vector machines.

Using the Higgins-Sel’kov oscillator the properties and
benefits of the proposed approach are presented. It is shown
that in cases were good margin functions are available,
e.g. based on feedback loop breaking, the method yields a
good approximative classification function already for small
sample numbers. For cases where the margin functions are
non-smooth, a larger samples are required but still a small
classification error can be achieved.
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