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Abstract Analysis and safety considerations of chemical and biological processes require complete
knowledge of the set of all feasible steady states. Nonlinearities, uncertain parameters, and discrete
variables complicate the task of obtaining this set. In this paper, the problem of outer-approximating
the region of feasible steady states, for processes described by uncertain nonlinear differential algebraic
equations including discrete variables and discrete changes in the dynamics, is addressed.

The calculation of the outer bounds is based on a relaxed version of the corresponding feasibility
problem. It uses the Lagrange dual problem to obtain certificates for regions in state space not contain-
ing steady states. These infeasibility certificates can be computed efficiently by solving a semidefinite
program, rendering the calculation of an outer bounding set computationally feasible. The derived
method guarantees globally valid outer bounds for the feasible steady states.

The method is exemplified by the analysis of a simple chemical reactor showing parametric un-
certainties and large variability due to the appearance of bifurcations characterising the ignition and
extinction of a reaction.
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1 Introduction

Chemical and biochemical processes are often subject to large modeling uncertainties and process
disturbances. Precise reaction mechanisms and kinetic parameters might be unknown and operating
conditions, e.g. feed flowrate, or feed temperature, can vary. Moreover, used substances in chemical
plants are potentially dangerous, e.g. inflammable or explosive; reactions can lead to the release of
large amounts of thermal energy. Also stationary temperature and pressure have to stay below critical
values and for instance in pharmaceutical processes the variability within the drug production has
to be restricted. This makes an in-depth analysis of process uncertainties and their influences on the
steady state behavior of the processes essential.

In this paper, we address the problem of computing the set of all feasible steady states of a process
described by uncertain hybrid nonlinear differential algebraic equations. Using the set of feasible steady
states the stationary process uncertainty can be upper bounded. Furthermore, it can be used to check
whether the process operates within previously defined constraints for all possible disturbances, pa-
rameter variations, and operating conditions. One exemplary question to be asked is whether thermal
runaway of a chemical reactor under specific failure situations can be avoided or if product specifications
are met.

Physical processes taking place in chemical plants are mostly continuous. There are, however im-
portant discrete phenomena like changes in the physical system, e.g. phase transitions, imposed qual-
itative changes caused by limitation of the equipment, such as limited tank capacity, discontinuous
input signals and process faults (7). To capture continuous as well as discrete phenomena, regime
based approaches are used to model the process behavior (21; 14; 13). Often, one refers to this kind of
models as hybrid models, because they contain both discrete and continuous dynamical components
and an interface describing the interaction between them.

For most nonlinear systems an analytical calculation of the set of feasible states is impossible.
Therefore, several methods have been developed for approximating this set. In the context of analysis
of trajectories one refers to this research as reachability analysis. Methods developed in this research
field are rather efficient if the considered system is linear time-invariant (9) and also for uncertain
linear systems some results exist (8). However, if the system under consideration is nonlinear, the
approximation of the feasible set is more difficult. Asarin and coworkers developed an approach for
two-dimensional systems based on piecewise linear approximation (1) and Ramdani and coworker (18)
proposed a method for high dimensional uncertain nonlinear systems using guaranteed set integration,
which yields good results for cooperative systems. Nevertheless, the performance of these methods
strongly depends on the particular structure of the nonlinear system and in many cases the results are
very conservative.

Due to this drawback of set-based approaches, for the analysis of nonlinear systems, often simple
Monte-Carlo type methods are employed (20). However, such approaches only provide the complete
set of possible steady states in the limit of infinite many samples. Important solutions might be left
out, especially for highly nonlinear systems.

In contrast to reachability analysis in this paper only the steady state behavior is studied. The
derived method follows the idea presented in the work of Waldherr et al. (25). There, recent advances
in the field of semidefinite programming (SDP) (16; 5) are employed to compute certificates that a
given set in state space cannot contain a steady state for any feasible model parameterization. A
very similar approach was earlier proposed by Küpfer et al. (12) for parameter estimation and later
extended to dynamical systems by Borchers and coworkers (2). However, these methods are restricted
to systems described by polynomial or rational vector fields, which is rarely the case for chemical
processes. Furthermore, discrete variables or parameters have not been considered.

In the following, an approach will be presented, which overcomes this shortcoming and allows the
outer approximation of the set of all feasible steady states of a process described by uncertain hybrid
nonlinear differential algebraic equations with non-polynomial vector fields. Thus, systems combining
continuous dynamics with logic or discrete components can be studied. Furthermore, in comparison
with (25) a more elaborate algorithm is proposed to obtain a more precise approximation of the set of
feasible steady states, for systems with steady state multiplicity.

The derived method can be used as a structured approach to obtain the bifurcation diagram of
uncertain systems. Bifurcation analysis is of particular interest in the analysis of uncertain nonlinear
systems and can help to obtain a better understanding of effects which may be observed , e.g. steady
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state multiplicity or saddle-node bifurcations (24). Calculating the bifurcation diagram shows the
potential of the derived method since up to now to the best knowledge of the authors no method exists
which can be employed to obtain the envelop of bifurcation diagrams of uncertain hybrid differential
systems.

The remainder of this paper is structured as follows: In Section 2 the problem of bounding the set
of steady states for processes described by non-polynomial hybrid differential algebraic equations is
presented. Section 3 contains a formalization of the problem. In Section 4 the problem is restated as
a feasibility problem, which is relaxed to a semidefinite program. Given this formulation an algorithm
is developed which can be used to determine an outer approximation of the set of feasible steady
states. In Section 5 we provide as an example the analysis of a uncertain CSTR, before in Section 6
we conclude the paper.

Mathematical notation: The space of real symmetric n×n matrices is denoted as Sn. The positive
semidefiniteness of a symmetric matrix X ∈ Sn is denoted X � 0 and the trace of X by tr(X).
Furthermore, Ixδ denotes the discrete set {1, . . . , nxδ}, where nxδ is the dimension of a vector x for a
particular discrete variable δ.

2 Problem statement

For the purpose of this work, we consider the set of all feasible steady states of processes described
by hybrid differential algebraic systems. This system class is quite general and able to describe both
continuous and discrete dynamical behavior. Classical chemical and biochemical reaction networks
belong to this system class, but also more complicated systems. Well known examples are chemical
reactors which allow for phase transitions and systems with discrete variables/inputs, e.g. opening of
a valve, or on/off switching of a heater.

In many cases using a hybrid description of a process is more natural than deriving a single ordinary
differential equation model, holding for all possible operating conditions at once. For every operating
condition a specifically tailored model can be employed, and the transitions between the models are
defined by switching surfaces.

According to Branicky et al. (4) hybrid differential algebraic systems can be modeled as 4-tuples[
Iδ, Σ, A, G

]
, (1)

in which Iδ is the set of discrete states. Σ = {Σδ}δ∈Iδ denotes the collection of controlled dynamical
systems with Σδ = [Fδ, Xδ, Uδ, Pδ], with the continuous state space Xδ ⊆ Rnxδ , the continuous input
space Uδ ⊆ Rnuδ , the continuous parameter space Pδ ⊆ Rn

p
δ , and continuous dynamics Fδ. The collection

of jump sets is denoted by A = {Aδ}δ∈Iδ , with Aδ ⊂ Xδ. G = {Gδ}δ∈Iδ is the jump transition map.
A hybrid differential algebraic system (1) can be seen as an automaton. Each node of this automaton

is a dynamical system described by Σδ,

0 = Fδ(ẋ, x, u, p), x(0) = x0 (2)

in which x ∈ Xδ denotes the vector of continuous state variables, u ∈ Uδ is the vector of continuous
control inputs, and p ∈ Pδ the vector of process parameters. The index δ is the label of the node.
The different nodes are connected by edges which represent possible transition between dynamical
systems Σδ, labeled by the appropriate transition condition and the update of the continuous state
(4). The interconnection from node δ to all other nodes and the update rules are defined in the jump
transition map Gδ. A jump to another node can only happen if the states of the dynamical system Σδ
are contained in the jump set Aδ ⊆ Xδ.

Note that for simplicity we do not distinguish here between controlled and uncontrolled jumps,
as this is not required for the rest of this work. For a more detailed discussion of hybrid dynamical
systems we refer to (4).

For the remainder of this paper, we are only interested in the steady states of (1). The steady states
have to lie in one of the continuous state spaces Xδ. Therefore, the interconnection structure A and G
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do not have to be considered, which considerably simplifies the analysis of (1). The system can thus
be written as {

0 = Fδ(ẋ, x, u, p), x(0) = x0

0 ≤ kδ(x, u, p),

}
δ∈Iδ

(3)

in which the constraint x ∈ Xδ is realized via the vector-valued function kδ. kδ is positive if and only
of x ∈ Xδ. Note that here and in the following the dependence of x, u, and p on δ is not indicated,
but implicitly assumed.

Given this description of the model class, the problem of finding all feasible steady states of system
(3) can be formalized as:

Problem 1 (Set of feasible steady states): Given the sets Iδ, Pδ ⊆ Pδ, Uδ ⊆ Uδ, compute the set X ∗,
which contains all feasible steady states of (3).

The sets Pδ and Uδ are hereby the sets of considered feasible parameters and inputs, in case of uncer-
tainties, and u ∈ Uδ is assumed to be stationary.

Note that the set of feasible steady states for a given decision variable δ ∈ Iδ is defined by

0 = fδ(x, u, p)
0 ≤ kδ(x, u, p),

(4)

with fδ(x, u, p) := Fδ(0, x, u, p). Hence, problem (1) can be split into nδ subproblems. For each sub-
problem one obtains a set of feasible steady states

X ∗δ = {x ∈ Rn
x
δ | ∃ p ∈ Pδ, u ∈ Uδ : fδ(x, u, p) = 0 ∧ kδ(x, u, p) ≥ 0}. (5)

The whole set of feasible steady states is given by the union of all steady states

X ∗ =
⋃
δ∈Iδ
X ∗δ × {δ}. (6)

Unfortunately, the set X ∗ is in general highly complex and cannot be determined precisely. Therefore,
we address in the following the problem of computing an outer-approximation X̂ ∗ of X ∗, such that
X ∗ ⊆ X̂ ∗. This was previously done by Waldherr et al. (25) for ordinary differential equations with
polynomial right hand sides. The main contribution of this paper is the generalization of this result
to hybrid non-polynomial DAE systems, what for instance enables us to apply the method for the
analysis of chemical reactors.

3 Bounding by piece-wise polynomial functions

The computational method we propose allows to handle uncertain systems that are described by
polynomial equations. Therefore, (4) has to be transformed to a set of uncertain polynomial equations.
In the case that fδ is rational, this can be achieved by multiplication with the denominator. However, if
non polynomial/rational terms appear, such as the Arrhenius term, then the system has to be rewritten
or approximated by a polynomial system.

Ohtsuka (15) showed that any system with smooth non-polynomial nonlinearities can be converted
to a polynomial system of larger state dimension, which is restricted via equality constraints to a man-
ifold of the dimension of the original system. Unfortunately, in many cases the equality constraints are
non-polynomial. To overcome this limitation, we apply a different method, which achieves a comparable
result without enlarging the state space.

Piece-wise polynomial functions:

In case that fδ is piece-wise polynomial, e.g. piece-wise linear, the state space can be partitioned into
different intervals. This leads to an increase in the number of decision variables, but no approximation
is required, Figure 1 illustrates this for the saturation function, which appears for instance if a process
contains flow limiting valves. It has to be emphasized that in cases like this, the partitioning depends
on the state, which induces constraints kδ(x, u, p) ≥ 0.
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Fig. 1 Saturation function as example for the partitioning of piece-wise polynomial functions.

General nonlinear functions:

For functions which are not piece-wise polynomial, e.g. the exponential term in the Arrhenius like rate
constant, polynomial lower and upper bounds can be introduced as

g
(1)
δ,i (x, u, p) ≤fδ,i(x, u, p) ≤ g(2)

δ,i (x, u, p), ∀x ∈ Xδ, u ∈ Uδ, p ∈ Pδ, i ∈ Ixδ (7)

where the index i corresponds to the ith element of the respective vector function. Using these bounds
it can be shown that

X ∗δ ⊆{ x ∈ Rn
x
δ |∃ p ∈ Pδ, u ∈ Uδ, c ∈ [0, 1]n :

cig
(1)
δ,i (x, u, p) + (1− ci)g(2)

δ,i (x, u, p) = 0,∀i ∈ Ixδ
}
.

(8)

Hence, the steady state constraint fδ(x, u, p) = 0 can be substituted by the polynomial constraint

cig
(1)
δ,i (x, u, p) + (1− ci)g(2)

δ,i (x, u, p) = 0, ci ∈ [0, 1], i ∈ Ixδ (9)

where c has to be appended to p. This step corresponds to a constraint relaxation and ||fδ,i(x, u, p)−
g
(j)
δ,i (x, u, p)|| � 1 should be enforced to keep the difference between X ∗δ and the set of solutions of the

relaxed problem small.
Combinations of the methods, e.g. rational, polynomial and nonlinear functions are possible, see

Section 5 for an example.
In the following, we assume that the system is polynomial or already approximated by a polynomial

system as described in this section.

4 Bounding steady states

In this section a method to compute an outer approximation of the state space region containing all
steady states is derived. For this purpose we define the feasibility problem,

(P ) :


find δ ∈ Iδ, x ∈ Rnx , u ∈ Rnu , p ∈ Rnp

subject to fδ(x, u, p) = 0
kδ(x, u, p) ≥ 0
x ∈ Xδ, u ∈ Uδ, p ∈ Pδ,

which is in the following used for the classification of the set X =
⋃
δ∈Iδ Xδ × {δ} in the state space.

If (P ) is infeasible, X cannot contain any equilibrium points. (P ) is called a mixed integer nonlinear
program. Unfortunately, the feasibility problem (P ) is in general non-convex and NP-hard.

Küpfer et al. (12) proposed a framework for relaxing a polynomial non-convex feasibility problem
to a semidefinite program (SDP). Due to inherent convexity of SDPs, these problems can be solved
computationally efficient, e.g. via primal-dual interior point methods. In the following, we present an
approach which is based on the work of Küpfer et al. (12) and has been used for analysis of the set of
feasible steady states in the case of biochemical reaction networks in (25).
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For the relaxation of (P ) to a SDP, the original feasibility problem is at first rewritten as a quadratic
feasibility problem (QP ), for each δ. Therefore, the vector ξ ∈ Rn

ξ
δ are introduced, which consists of

the monomials of the model equation (4), i.e.

ξ = (1, xi, uj , pk, xiuj , xipk, ujpk, . . .)T (10)

for all x ∈ Xδ, u ∈ Uδ, p ∈ Pδ, i ∈ Ixδ , j ∈ Iuδ and k ∈ Ipδ . Using this monomial vectors ξ, the vector of
equality constraints fδ(x, u, p) = 0 can be transformed to

0 = fδ,i(x, u, p) = ξTQiξ, i ∈ Ixδ , (11)

in which fδ,i is the ith row of fδ, and Qi ∈ Sn
ξ
δ . Note that for higher order polynomial terms, additional

constraints have to be introduced. For instance if ξ contains the second order term x1p1, the constraint
x1p1 = x1 · p1 must be introduced to express the dependency of the higher order monomial on the first
order monomials. Note that there are in general multiple possibilities to decompose a specific term
into monomials, which provides additional degrees of freedom. The decomposition leads to additional
constraints of the form

ξTQiξ = 0, i ∈ Iacδ , (12)

in which Qi ∈ Sn
ξ
δ , Iacδ = {nxδ + 1, . . . , nxδ + nacδ }, and nacδ is the number of such dependencies. To

simplify the overall notation we define Ieqδ = Ixδ ∪ Iacδ .
Besides the equality constraints, also the inequality constraints x ∈ Xδ, u ∈ Uδ, p ∈ Pδ, and

kδ(x, p, u) ≥ 0 are transformed. To simplify the notation we require Xδ, Uδ, and Pδ to be given as
convex polytopes. In this case, there exists a matrix B ∈ Rnbδ×n

ξ
δ and a choice of the monomial vector

ξ such that  x ∈ Xδ
u ∈ Uδ
p ∈ Pδ

kδ(x, p, u) ≥ 0

⇔ Bξ ≥ 0. (13)

Hereby, nbδ is the total number of constraints. Note that also the sets Xδ, Uδ, and Pδ whose boundaries
are determined by polynomial or rational constraints in x, p, and u can be handled in this framework.

The original feasibility problem (P ) can then be restated as

(QP ) :


find ξ ∈ Rn

ξ
δ , δ ∈ Iδ

subject to ξTQiξ = 0, i ∈ Ieqδ
Bξ ≥ 0
ξ1 = 1.

Using the method suggested by Parrilo (17), (QP ) is subsequently relaxed to a SDP, for each δ, by
introducing the matrix

Ξ = ξξT , (14)

with Ξ ∈ Sn
ξ
δ and substituting the appearing non-convex constraint rank(Ξ) = 1 with the convex

constraint Ξ � 0, which is implicitely satisfied for all Ξ satisfying (14). This leads to the relaxed
feasibility problem

(RP ) :



find Ξ ∈ Sn
ξ
δ , δ ∈ Iδ

subject to tr(QiΞ) = 0, i ∈ Ieqδ
BΞe1 ≥ 0
BΞBT ≥ 0

tr(e1eT1 Ξ) = 1
Ξ � 0,

in which e1 = (1, 0, . . . , 0)T ∈ Rn
ξ
δ . Note that the relaxation may induce additional solutions. To reduce

conservatism, the redundant constraint BΞBT ≥ 0 is added, which is fulfilled by every solution of the
problem (QP ) (12).
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From (RP ) one can derive the set of Lagrange dual problems {(DPδ)}δ∈Iδ , with

(DPδ) :



maximize ν1

subject to e1λT1 B +BTλ1e
T
1 +BTλ2B

+λ3 + ν1e1e
T
1 +

∑
i∈Ieqδ

ν2,iQi = 0

λ1 ≥ 0, λ2 ≥ 0, λ3 � 0,

in which the Lagrangian multipliers are λ1 ∈ Rnbδ , λ2 ∈ Sn
b
δ , λ3 ∈ Sn

ξ
δ , ν1 ∈ R, and ν2 ∈ Rn

eq
δ (25).

Using the dual problem, one can obtain an infeasibility certificate for the original problem.

Lemma 1 Let νδ,∗1 be the optimal cost of (DPδ). If

inf
{
νδ,∗1 | δ ∈ Iδ

}
=∞, (15)

then the original feasibility problem (P ) is infeasible.

This follows directly from weak duality and the conservatism of the made relaxations. Only if
the Lagrangian dual problem is unbounded from above for all δ ∈ Iδ the infeasibility of (P ) can be
guaranteed.

The advantage of the formulation using the Lagrange duals is that all subproblems are convex and
if no solution is found, this is a certificate that no solution exists.

4.1 Algorithm

Using the Lagrangian dual problems {(DPδ)}δ∈Iδ , certificates for the infeasibility of (P ) can then be
computed. This allows to exploit {(DPδ)}δ∈Iδ to determine an outer approximation X̂ ∗ of X ∗. In this
work, this is done using a multi-dimensional bisection algorithm (11).

Starting from the initial set X0 a recursive bisection of X0 =
⋃
δ∈Iδ Xδ,0×{δ} is performed. For each

of the resulting subsets Xi arising in the bisection, the corresponding set of dual problems {(DPδ)}δ∈Iδ
are analyzed and it is tried to compute infeasibility certificates for Xi. Successful computation of an
infeasibility certificate assures that Xi does not intersect the set of feasible steady states X ∗. If no
certificate can be obtained, Xi is bisected, and it is tried to obtain an infeasibility certificate for the
subsets. An approximation X̂ ∗ of the set of feasible steady states is finally given by

X̂ ∗ = X0 \
⋃
I

XI (16)

where XI are the sets for which an infeasibility certificate could be obtained. The basic implementation
can be summarized as follows:

Algorithm: X̂ ∗ = Analyze-X (X ,U ,P)

1. If V(X ) < ε, return X̂ ∗ = X
2. Check feasibility of DPδ(Xδ,Uδ,Pδ), ∀δ ∈ Iδ

3. If inf
{
νδ,∗1 | δ ∈ Iδ

}
=∞, return X̂ ∗ = ∅

4. If inf
{
νδ,∗1 | δ ∈ Iδ

}
6=∞:

4.1. Bisection of X in X1 and X2

4.2. X̂ ∗1 = Analyze-X (X1,U ,P)
4.3. X̂ ∗2 = Analyze-X (X2,U ,P)
4.4. Return X̂ ∗ = X̂ ∗1 ∪ X̂ ∗2

This algorithm is called recursively until the volume, V (X ) =
∫
X dp, of a test set X is smaller than a

tolerance ε. For a more detailed discussion of this bisection algorithm we refer to (11). The algorithm is
implemented in Matlab. For solving the dual problems {(DPδ)}δ∈Iδ the open source software toolbox
SeDuMi is used (22).
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Remark 1 Note that for the application of this algorithm an initial set X0 must be chosen. If a
guarantee is needed that an outer approximation of X ∗ containing all feasible equilibrium points is
found, X ∗ ⊆ X0 must hold. In typical applications this is not a restriction because a suitable X0 can
often easily be determined from physical insight into the problem.

4.2 Reduction of computational effort

The advantage of the formulation in terms of the Lagrangian dual is the inherent convexity property
of {(DPδ)}δ∈Iδ , due to which {(DPδ)}δ∈Iδ can be solved in polynomial time. The original problem
(P ) on the other hand is NP-hard and infeasibility of (P ) cannot be certified directly.

Despite the fact that (DPδ) can be solved in polynomial time the computational effort might
still become intractable. Already for medium scale systems the number of associated optimization
variables no is large. It grows in the order of O2(nξ) with the number of uncertain variables, e.g.
states, parameters and inputs. Furthermore, the dominating time for solving these problems is the cost
for solving a linear program, which is in general of order O3(no) (3). Thus the effort for solving (DPδ)
grows in general in the sixth order in the number of uncertain variables. Clearly, for large systems this
might be inhibitive if (DPδ) does not exhibit a particular structure, that can be exploited for speeding
up the solution process, e.g. sparsity in (bio-)chemical reaction networks.

Additionally, the cardinality of Iδ influences directly the necessary computational effort, as (DP )δ
has to be solved for all δ ∈ Iδ independently. In case that card(Iδ) � 1, checking all the distinct
combinations of decision variables can become very costly. One possibility to reduce the problem size
is to divide Iδ into a smaller number of subsets Dd ⊆ Iδ, such that

Iδ =
⋃
d∈Id

Dd. (17)

Here the nodes δ ∈ Dd are merged to one common node, which contains card(Dd) nodes of the original
system. For notational simplicity and to avoid extreme conservatism, we assume here that the state
variables, parameters, inputs and constraints have the same physical meaning for all δ ∈ Dd. In this
case, the feasibility problem (P ) can then be restated as

(R) :



find d ∈ Id, x ∈ Rnxd , u ∈ Rnud , p ∈ Rn
p
d

subject to
∑
δ∈Dd

cδfδ(x, u, p) = 0∑
δ∈Dd

cδkδ(x, u, p) ≥ 0∑
δ∈Dd

cδ = 1

x ∈ Xd, u ∈ Ud, p ∈ Pd, cδ ∈ [0, 1]∀δ ∈ Dd,

in which Pd = ∪δ∈DdPδ,Ud = ∪δ∈DdUδ.
The feasibility problem (R) is a relaxed version of (P ), since the solution set of (R) is a superset

of the solution set of (P ). This holds, as a solution {δs, xs, us, ps} of (P ) with fδs(xs, us, ps) = 0 and
kδs(xs, us, ps) ≥ 0 is also a solution of (R), for cδ = 0 ∀δ 6= δs and cδs = 1. Thus, the solution set of
(R) contains the solution set of (P ), but for cδ chosen differently, additional solutions may exist.

For this relaxed infeasibility (R) again the dual problem can be derived using the same tools and
performing the same relaxation as done before. The main differences are that the vector ξ contains
now also the new variables ci and additional equality and inequality constraints have to be considered.

The advantage of (R) is that a lower number of dual problems has to be considered in order to show
the infeasibility of (P ). If this is combined with a hierarchical refinement of the subdivision dependent
on the feasibility of (R), the computational effort to check the infeasibility of a set X can be reduced
dramatically.
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Fig. 2 Schematic of the considered simple CSTR.

5 Analysis of a CSTR

In order to illustrate the proposed approach the set of feasible steady states of a CSTR is studied. The
reactor considered consists of a simple vessel filled with fluid stirred by an impeller, an inflow and an
outflow, as depicted in Figure 2. To avoid over-temperature active water-cooling, which is provided by
three pumps, is considered. The objective is now to classify the set of steady states assuming uncertain
parameters and possible pump failures.

5.1 System description

We assume in the following constant reaction volume and adiabatic conditions. The reaction in the
reactor is given by a first-order, exothermal liquid-phase reaction

A
k→ B.

The conversion rate is of the form R = k(T )cA, in which the reaction rate constant is modeled using
Arrhenius’ equation,

k(T ) = k∞e
− E
RT . (18)

Simple mass and energy balances lead to the following set of ordinary differential equations:

dcA
dt

=
1
θ

(cAf − cA)− k(T )cA

dT

dt
=

1
θ

(Tf − T )− ∆HR

Cpρ
k(T )cA −

kwAw
VRCpρ

(Tw − T )K(T,mp),
(19)

capturing the dynamics of the CSTR (19). The state variables are the concentration cA of reactant A,
and the reactor temperature T . The parameters are the mean residence time θ = VR/Q, the reactor
volume VR, the flowrate Q, the concentration of A in the feed stream cAf , the feed stream temperature
Tf , the reaction enthalpy ∆HR, the heat capacity of the fluid Cp, the fluid density ρ, the cooling water
temperature Tc, the effective heat exchange coefficient kwAw

VR
, and the number of operating cooling

pumps mp.
The over-temperature controller is denoted by K(T,Mp). This controller regulates the active cooling

water flow to keep the temperature below the critical reactor temperature Tcrit. This controller is
inactive as long as the temperature stays below a threshold temperature Tth. Above this threshold,
the cooling water flowrate increases linearly with the temperature until the maximal flow rate is
reached. This over-temperature control is a proportional control with input saturation and threshold,
implemented via the control law

K(T,mp) =
{

max {kc(T − Tth),mp} for T > Tth
0 otherwise, (20)



10 J. Hasenauer et al.

Table 1 Parameter values.

Parameter Value Units Uncertainty
Tf 298 K ±2K
cAf 2.0 kmol/m3 ±2%
k∞ 5.0× 108 1/min ±2%
E/R 8.0× 103 K ±2%
∆HR −3.0× 105 kJ/kmol ±2%
Cp 4.0 KJ/(kg K) −
ρ 103 kg/m3 −
θ 10 min −

kwAw
VR

40 kJ/(min K m3) −
Tw 298 K ±2K
mp 3.0 − −
kc 0.1 1/K −
Tth 390 K −

θ

T
(θ

)

100 θep 101 θip 102

300

350

400

450

ignition
point

extinction
point

Fig. 3 Bifurcation diagram of CSTR without parameter uncertainties.

in which kc is the controller gain. The numerical values of the nominal parameters are provided in
Table 1.

Note that the considered system can be modeled as a hybrid differential system. The decision
variable is hereby directly connected to the temperature. At Tth and T = Tth + mp

kc
a change in

the systems dynamics occurs. Additionally, the number of operating pumps is discrete, which causes
additional switching if pump failures are occur.

5.2 Analysis of the nominal CSTR

In case that all parameters are known, one can exactly predict how the reactor behaves under dif-
ferent operating conditions. Since the mean residence time θ is the easiest parameter to manipulate,
the operating condition is often defined in terms of θ. Using continuation methods it is possible to
numerically compute the steady state curve (bifuraction diagramm) for varying residence times (6), as
shown in Figure 3. θep and θip denote the mean residence time at the extinction and the ignition point
respectively. The computed bifurcation diagram can be used to determine precisely the set of feasible
operating points if no uncertainties are present.

5.3 Analysis of CSTR with parameter uncertainties

Unfortunately, in practice, most parameters are subject to uncertainties. In this case, calculating the
set of feasible steady states is significantly more challenging. Typically, sampling based techniques
such as Monte-Carlo like methods are used. These allow to approximate the union of all feasible
equilibrium points X ∗s . However, as for all Monte-Carlo like methods no outer bounds can be provided.
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Our approach overcomes this problem and enables us to compute an guaranteed outer approximation
of the set of feasible equilibrium points of the uncertain system.

Initial outer bounding set X0

In order to apply the proposed method, a set X0 ∈ Rn which contains all feasible steady states of the
uncertain system has to be determined. This set X0 can be arbitrary large but has to be bounded. For
system (19) such a conservative set is given by

X0 =
{

[cA, T ]T ∈ Rn|0 ≤ cA ≤ cAf,max, Tf,min ≤ T ≤ Tf,max −
∆HR,max

Cp,minρ

}
,

where pmin and pmax are minimal and maximal values of parameter p under the given uncertainties.
This outer bounding set X0 can be determined using the physical properties of the system and the
state equations (19).

Note that these outer bounds are extremely conservative and are strongly refined by in the following
by the proposed algorithm.

Bounding the rate constant k(T )

Besides the set X0, the presented method also requires a polynomial systems. Hence, the Arrhenius-like
rate constant has to be bounded from below and from above using polynomial functions, as outlined
in Section 3. In this paper k(T ) is bounded via three linear functions,

max(g1(T ), g2(T )) ≤ k(T ) ≤ g3(T ), ∀T ∈ [Tmin, Tmax], (21)

as depicted in Figure 4, in which

g1(T ) = kmin(Tmin) (22)

g2(T ) =
Ekmin(Tmax)

RT 2
max

(T − Tmax) + kmin(Tmax) (23)

g3(T ) =
kmax(Tmax)− kmax(Tmin)

Tmax − Tmin
(T − Tmin) + kmax(Tmin), (24)

and

kmin(T ) = k∞,mine
−(ER )

max

1
T , (25)

kmax(T ) = k∞,maxe
−(ER )

min

1
T . (26)

This approach to outer bound k(T ) is simple and has the disadvantage that the bounding of k(T )
is less precise if the difference of Tmin and Tmax becomes large. Therefore, we do not use a static
approximation but rather select g1, g2 and g3 in each iteration of the bisection algorithm dependent
on the box X in state space currently under consideration. This adaption allows to keep the over-
estimation of the set of feasible steady states small.

One could of course choose other methods to bound k(T ), for instance based on high order poly-
nomials and the Taylor series expansion. However, the computational effort to solve the semidefinite
program once will increase significantly and the presented simplistic approach will be computationally
more efficient for the considered example system.
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T

k
(T

)

Tmin Tmax

upper
bound

lower
bound

g1

g2

g3

Fig. 4 Bounding of uncertain Arrhenius term (light gray area) with three linear functions (– –).

cA

T

0.0 0.5 1.0 1.5 2.0
300

350

400

450

Fig. 5 Region in state space which cannot contain steady states for given parameter uncertainties (light gray
rectangles) versus steady states (·) computed using Monte-Carlo sampling.

Set of feasible steady states

Using the bounding of k(T ) and X0 an outer bounding set of feasible steady states of the CSTR can
be computed employing the methods presented in Section 4. Here, uncertainties in several parameters
are allowed. The amounts of uncertainty with respect to the nominal values are provided in Table 1.
The decision variables δ is hereby a set of seven possible system configurations, as up to the hybrid
dynamics introduced by the over-temperature protection also failures of two of the three pumps are
considered, mp ∈ {1, 2, 3}.

The algorithm outlined in Section 4.1 is in the following used to estimate the set of all feasible
equilibrium points of (19) for the given parameter uncertainties and mp ∈ {1, 2, 3}. The results are
shown in Figure 5, where the part of the state space which is certified infeasible is marked light gray. To
compare our results with classical approaches, one thousand equally distributed Monte-Carlo samples
for the accessible parameter set were taken and the steady states were determined.
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0.0
0.5

cA

1.0
1.5

2.010−1
100

101

θ

102
103

300

350

400

450

T

Fig. 6 Outer approximation of the envelope of the bifurcation diagram of an uncertain system and its projec-
tion of the θ-T -plane. Note that in contrast to Figure 5 here the region in space which may contain equilibrium
points is marked with light gray cubes.

As one can see in Figure 6, points from the Monte Carlo samples are always contained in the outer
bounded sets. However, the Monte-Carlo sampling provides only an analysis of a finite set of points
and a conclusion about the region between these points can not be drawn directly. The set of feasible
equilibrium points is always underestimated, even for exhaustive Monte-Carlo sampling. This can lead
to problems if the mapping from parameters to equilibrium points is highly nonlinear (10).

The proposed set-based method on the other hand guarantees that all equilibrium points are con-
tained in the determined set. Hence, it can also be used to verify process safety. In this work the
method has for instance be used to compute certificates that a critical temperature Tcrit = 440 K is
not exceeded even if one pump fails.

Envelope of the bifurcation diagram

Besides the set of feasible steady states, this approach can also be used to determine an outer approx-
imation of the envelope of the bifurcation diagram of the uncertain hybrid system. This is depicted in
Figure 6. Knowledge of the envelope of the uncertain bifurcation diagram allows a better understand-
ing of the system. One can for instance study the multiplicity of steady states or the stability of whole
uncertain branches of the bifurcation diagram. For the later, set-based stability analysis of uncertain
nonlinear systems has to be used, compare (23).

In this work, the envelope of the bifurcation diagram is used to determine lower and upper bounds
on the extinction and the ignition point of (19),

5.6× 10−1 min ≤ θep ≤ 5.7× 100 min

1.0× 101 min ≤ θip ≤ 7.6× 101 min.

Bounds on θip and θep are of practical relevance as they can be used for operating the reactor in a
region where small disturbances cannot lead to extinction or ignition of the reaction. Note that θip
and θep can vary one order of magnitude despite very small uncertainty in parameters.

6 Conclusion

In this work we studied the problem of guaranteed outer bounding the region in state space containing
all equilibrium points of uncertain hybrid differential algebraic systems. The proposed method is based
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on the formulation as a feasibility problem and a relaxation to a SDP. It is shown that guaranteed
outer bounds of the feasible set of equilibrium points can be determined.

The advantage of the proposed methodology in comparison to Monte-Carlo based approaches is
explained and shown considering a simple CSTR process. In particular, the developed method does
not rely on sampling and can deal with strongly nonlinear and non-unique mappings from parameters
to steady states.

The computed set is guaranteed to contain all feasible steady states, thus worst case scenarios can
be analyzed. This is of certain interest to evaluate controller performance in case of failures.

Finally, it is shown that the proposed method can also be used to determine the envelope of the
bifurcation diagram of uncertain systems. This allows to obtain a better understanding of the possible
complex process dynamics.
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