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Abstract In many biologically relevant situations, cells of a clonal population show a heterogeneous
response upon a common stimulus. The computational analysis of such situations requires the study
of cell-cell variability and modeling of heterogeneous cell populations. In this work, we consider pop-
ulations where the behavior of every single cell can be described by a system of ordinary differential
equations. Heterogeneity among individual cells is modeled via differences in parameter values and
initial conditions. Both are subject to a distribution function which is part of the cell population
model.

We present a novel approach to estimate the distribution of parameters and initial conditions from
single cell measurements, e.g. flow cytometry and cytometric fluorescence microscopy. Therefore, a
maximum likelihood estimator for the distribution is derived. The resulting optimization problem is
reformulated via a parameterization of the distribution of parameters and initial conditions to allow
the use of convex optimization techniques.

To evaluate the proposed method, artificial data from a model of TNF signal transduction are
considered. It is shown that the proposed method yields a good estimate of the parameter distributions
in case of a limited amount of noise corrupted data.

Keywords parameter estimation · cell population · likelihood · flow cytometry · convex optimization

Postprint Series Issue No. 2010-7
Stuttgart Research Centre for Simulation Technology (SRC SimTech)

SimTech – Cluster of Excellence
Pfaffenwaldring 7a
70569 Stuttgart

publications@simtech.uni-stuttgart.de
www.simtech.uni-stuttgart.de



2 J. Hasenauer et al.

1 Introduction

Most of the modeling performed in the area of systems biology aims at achieving a quantitative
description of intracellular pathways within a ”typical cell”. Unfortunately, experimental data used
to calibrate the models are in general obtained using averaged cell population data, e.g. western blot
measurements. If the studied population is highly heterogeneous, meaning that there is a large cell-
cell variability, fitting a single cell model to cell population data can lead to biologically meaningless
results. In oder to understand the dynamical behavior of heterogeneous cell populations it is crucial
to develop integrated cell population models, describing the whole population and not only a single
individual.

Modeling on the population scale has already been addressed by Mantzaris [1] and Munsky et
al. [2]. These authors demonstrated that populations can show a bimodal response if stochasticity in
biochemical reactions is considered. But besides stochasticity in biochemical reactions there are other
reasons which can also lead to heterogeneity in populations. Examples are unequal partitioning of
cellular material at cell division [1], or genetic and epigenetic differences [3].

For the purpose of this paper, heterogeneity in populations is modeled by differences in parameter
values of the model describing the single cell dynamics [4,5], whereas the network structure is assumed
to be identical in all cells. The distribution of parameter values and initial conditions within the cell
population of interest is described by a multivariate distribution function, which is part of the cell
population model. This parametric approach is well suited for modeling of genetic and epigenetic
differences.

In the following the problem of estimating the distribution function of the parameters is studied.
Therefore, experimental data obtained via flow cytometry or cytometric fluorescence microscopy are
considered. These measurement devices provide single cell data using fluorescently labeled antibodies
[6].

To estimate the parameter distributions, in a first step, an appropriate population model has to be
selected. In literature mathematical models of cell populations are either described as cell ensembles
[2,4], or as a non-linear partial differential equation (PDE) for the probability distributions of the state
variables [1,5,7,8]. In case of ensemble models, a differential equation is assigned to each cell. PDE
models describing the time evolution of the distributions of the state variables are easy to handle from a
theoretical point of view but hard to simulate for medium and large scale single cell models. Therefore,
besides in [5] only low dimensional PDE models of populations have been studied in literature so far
[1,7,9].

In this paper a model describing the state and output distribution functions within a heterogeneous
cell population is derived. Therefore, a cell ensemble model is used in combination with classical density
estimation [10]. With this approach, the state and output distribution within the population can be
determined using only the single cell model and the parameter distribution.

Employing this efficient computation scheme for the population response a novel estimation method
is developed. The joint likelihood of parameter distribution and data is derived, based on which the
maximum likelihood estimate of the parameter distribution is determined. It is shown that the problem
of determining the maximum likelihood estimate of the parameter distribution function is a convex
problem and can be solved efficiently.

Compared to the classical approach for parameter estimation in populations [4,5,7,9], the proposed
method does not rely on the approximation of the output distribution at every measurement instance.
Therefore, the proposed scheme can directly use the measured data without any approximation. This
allows to obtain a good approximation of the parameter distribution with a smaller number of single
cell measurements compared to the other approaches. Additionally, a very realistic measurement noise
model is considered [5].

The paper is structured as follows. In Section 2, the problem of estimating the parameter distri-
bution is introduced. In Section 3, we present the simulation model for state and output distribution.
Section 4 describes the proposed identification procedure and in Section 5 the method is applied to a
TNF signal transduction model.
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2 Problem statement

For the purpose of this work, a model of a biochemical reaction network in a population of N cells is
given by the collection of differential equations

ẋ(i) = F (x(i), p(i)), x(i)(0) = x0(p(i)),

y(i) = H(x(i), p(i)), i ∈ {1, . . . , N}
(1)

with state variables x(i)(t) ∈ Rn+, measured variables y(i)(t) ∈ Rm+ , and parameters p(i) ∈ Rq+. The
vector field F : Rn+ × Rq+ → Rn is Lipschitz continuous and the functions H : Rn+ × Rq+ → Rm+
and x0 : Rq+ → Rn+ are continuous. In case concentration x

(i)
k is measured via flow cytrometry y(i) =

H(x(i), p(i)) = cx
(i)
k , where c is a proportionality factor. The index i specifies the individual cells within

the population. The parameters p(i) can be kinetic constants, e.g. reaction rates or binding affinities.
Cell-cell interactions are assumed to be negligible for the considered pathway, which is the case in
many in vitro lab experiments.

Heterogeneity within the cell population is modeled by differences in parameter values among
individual cells. The distribution of the parameters p(i) is given by a probability density function
Φ : Rq+ → R+, with

∫
Rq

+
Φ(p)dp = 1. This density function Φ is part of the model specification, and the

parameters of cell i are subject to the probability distribution

Pr(p(i)
1 ≤ p1, · · · , p(i)

q ≤ pq) =
∫ p1

0

· · ·
∫ pq

0

Φ(p̃)dp̃1 · · · dp̃q. (2)

In this paper measurement devices which provide single cell data

Di =
(
ti, ȳ

(i)(ti)
)
, i = 1, . . . ,M, (3)

are considered, such as flow cytometry and flow fluorescence microscopy. Here ȳ(i)(ti) is the measured
output of the cell i at the time cell i is measured, ti. M is the total number of measured cells. The
complete set of data is denoted by

D = {Di}i∈{1,...,M} =
{(
ti, ȳ

(i)(ti)
)}

i∈{1,...,M}
. (4)

Note that for the considered experimental devices, cells cannot be tracked over time, and are removed
from the population in order to obtain the measurements. Thus, only one data point for each cell is
taken, and in particular no single-cell time series data are available. On the other hand, the samples
drawn from the cell population are independent and identically distributed. Contrary to previous work
[5,7], it is not assumed that M is large enough to determine an approximate of the output distribution.

Like most data also the considered single cell data are subject to noise. For the rest of the paper,
noise consisting of a relative and an absolute component is considered,

ȳ(i)(ti) = diag(η1)y(i)(ti) + η2, (5)

in which ȳ(i) is the measured output, y(i) is the actual output, and ηj ∈ Rm is a vector of log-normally
distributed random variables with probability density functions

fηj
k
(ηjk) =


1√

2πσjkη
j
k

exp

−1
2

(
log ηjk − µ

j
k

σjk

)2
 ηjk > 0

0 ηjk ≤ 0

, j = 1, 2, k = 1, . . . ,m, (6)

yielding the joint probability density fηj (ηj) =
∏m
k=1 fηj

k
(ηjk). The measurement noise distribution is

chosen to be log-normal, which is a good model for the commonly seen noise distributions of the con-
sidered measurement device. Additionally, the property that all outputs are positive is conserved. For
notational simplicity the measurement errors of the different outputs are assumed to be independent.

Given this setup the problem we are concerned with is:
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Fig. 1 Kernel density estimate (—) of Υ (y|t, Φ) for the measured outputs (o) and the associated kernels (– –).

Problem 1 Given the measurement data D, the cell population model (1), and the noise model (6),
determine the parameter distribution Φ.

Unfortunately, estimation of Φ using a cell population model (1) with a finite number of cells and
discrete sampled data (4) is fairly difficult as no single cell trajectories are available. A more natural
approach is to use a distribution description of the response of the cell population (1), in particular as
the number of cells considered in a standard lab experiment is of the order 109 and hence nevertheless
too large to be simulated on an individual basis. In the next section a model for the output distribution
function of the cell population is introduced.

3 Modeling and simulation of heterogeneous cell populations

As outlined in the previous section, ensemble models are difficult to analyze in the context of cell
population studies. Continuous statistical model in which states/outputs of the population are de-
scribed by probability densities defined on the state/output space are preferable. Therefore, a model
for the output distribution Υ (y|t, Φ) is derived, with Υ : R × Rm+ × `1 → R+ : (t, y, Φ) 7→ Υ (y|t, Φ)
and

∫
Rm

+
Υ (y|t, Φ)dy = 1 ∀t, where Φ is the parameter distribution within the model [5]. Based on

this density function Υ , the probability of picking at random a cell from the population with outputs
y(i)(t) ∈ Y ⊂ Rm, where Y is an arbitrary set in the output space, is given by

Pr(y(i)(t) ∈ Y) =
∫
Y
Υ (y|t, Φ)dy. (7)

For the computation of the output distribution Υ (y|t, Φ) a kernel density estimator is used. Kernel
density estimators are non-parametric approaches to estimate probability distributions from sampled
data [10]. They are widely used and can be thought of as placing probability ”bumps” at each obser-
vation, as depicted in Figure 1. These ”bumps” are the kernel functions K, with

∫
Rm

+
Kdy = 1. In this

work log-normal kernels,

Kk

(
yk − y(i)

k (t), hk
)

=


1√

2πhkyk
exp

−1
2

(
log yk − log y(i)

k (t)
hk

)2
 yk > 0

0 yk ≤ 0

(8)

are used, as they conserve the positivity of the measured concentrations. The parameter hk is the
standard deviation and in the literature also often called smoothing parameter [10]. For the multivariate
case, the multivariate kernel

K
(
y − y(i)(t), h

)
=

m∏
k=1

Kk

(
yk − y(i)

k (t), hk
)
, (9)

is chosen.
To compute the cell population response for a given parameter distribution Φ(p), S independent

single cell trajectories y(i)(t) of the cell population (1) are calculated. The parameters for these cells
are sampled from the parameter distribution Φ and the initial conditions computed according to
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x0(p(i)). Given this set of single cell trajectories an approximation of the output distribution of the
cell population is given by

Υ (y|t, Φ) =
1
S

S∑
i=1

K
(
y − y(i)(t), h

)
. (10)

Similar approaches have also been employed in [4,5].
Note that selection of the smoothing parameter h is crucial and depends strongly on S. There are

rules-of-thumb available [10], as used here, but also the least-squares cross-validation method [11] can
be employed.

4 Estimation of parameter distribution

In the previous section a method to determine the output distribution within the cell population is
presented. Unfortunately, in order to simulate the population the parameter distribution Φ has to be
known. Therefore, a maximum likelihood approach for estimating Φ is developed next.

4.1 Likelihood function and corresponding optimization problem

To determine an estimate of the actual parameter distribution Φ(p), at first the likelihood function
L(Φ), which gives the likelihood of a particular parameter distribution with respect to the data D, is
required. As the measurements are independently and identically distributed the likelihood of Φ is

L(Φ) =
M∏
i=1

fΦ(Di), (11)

in which fΦ(Di) is the conditional probability density function of measuring Di = (ti, ȳi) given Φ. For
this system fΦ(Di) is given by

fΦ(Di) =
∫

Rm
+

fy(ȳ(i))Υ (y|ti, Φ)dy. (12)

The conditional probability density fy(ȳ(i)) is the probability density of measuring ȳ(i) given y. Ac-
cording to the measurement noise model (5),

fy(ȳ(i)) =
m∏
k=1

fyk
(ȳ(i)
k ), (13)

in which fyk
(ȳ(i)
k ) is the value of the line integral

fyk
(ȳ(i)
k ) =

∫ ȳ
(i)
k /yk

0

fη1
k
(s)fη2

k
(ȳ(i)
k − yks)ds. (14)

For this line integral no explicit solution has been found and therefore it is evaluated numerically using
the adaptive Simpson quadrature method [12] implemented in MATLAB.

Given this formulation of the likelihood and the conditional probability distributions, the maximum
likelihood estimate Φ∗ of the parameter distribution is the solution of the constraint optimization
problem

maximize
Φ

M∑
i=1

log fΦ(Di)

subject to
∫

Rq
+
Φ(p)dp = 1

Φ(p) ≥ 0 ∀p ∈ Rq+.

(15)

Here, the log-likelihood is maximized and the two constraints ensure that Φ is a probability density.
Unfortunately, (15) is infinite dimensional and thus not computable numerically.
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4.2 Parameterization of parameter distribution Φ

To avoid the infinite dimensional optimization problem (15), the parameter distribution Φ is parame-
terized according to

Φϕ(p) =
nϕ∑
j=1

ϕjΛj(p). (16)

Here Λj(p), j = 1, . . . , nϕ are ansatz functions for Φ, with Λj : Rq+ → R+ and
∫

Rq
+
Λi(p)dp = 1. Note

that not only Φ but also the ansatz functions Λj are probability density functions. The weighting vector
for the ansatz functions is denoted by ϕ ∈ [0, 1]nϕ where nϕ is the number of ansatz functions. In this
work, Gaussian distributions are used as ansatz function but the presented approach is independent
of the exact choice of ansatz functions.

Given a parameterization of Φϕ the output distribution can be written as

Υ (y|t, Φϕ) =
nϕ∑
j=1

ϕjΥ (y|t, Λj), (17)

where Υ (y|t, Λj) is the output distribution obtained for simulation with a parameter distribution ac-
cording to Λj . Equation (17) holds because the single cells are independent and the output distribution
is the weighted sum of the kernel functions. Hence, it can be shown that the super position principle
is fulfilled [5].

4.3 Simplification of the likelihood function and optimization problem

Based on the parameterization of the parameter distributions and the output distributions, the condi-
tional probability density fϕ(Di) can be written as

fϕ(Di) =
∫

Rm
+

fy(ȳ(i))Υ (y|ti, Φϕ)dy

=
∫

Rm
+

fy(ȳ(i))
nϕ∑
j=1

ϕjΥ (y|ti, Λj)dy

=
nϕ∑
j=1

ϕj

∫
Rm

+

fy(ȳ(i))Υ (y|ti, Λj)dy.

(18)

As the data Di, the conditional probability density fy(ȳ(i)), and the output distributions Υ (y|t, Λj)
are known, the conditional probability fϕ(Di) can be simplified to

fϕ(Di) =
nϕ∑
j=1

ϕjc
(i)
j

= ϕT c(i)

(19)

with c(i) = [c(i)1 , . . . , c
(i)
nϕ ]T and

c
(i)
j =

∫
Rm

+

fy(ȳ(i))Υ (y|ti, Λj)dy. (20)

The values c(i)j are determined using a Monte-Carlo based integration scheme [13].
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Fig. 2 Graphical representation of the TNF signal transduction model.

Employing the parameterization of Φ and the reformulation of fϕ(Di), the optimization problem
(15) becomes

maximize
ϕ

M∑
i=1

log
(
ϕT c(i)

)
subject to 1Tϕ = 1,

ϕ ≥ 0,

(21)

in which 1T = [1, . . . , 1] ∈ Rnϕ . Note that problem (21) belongs to the class of nonlinear concave
maximization problems with linear constraints [14]. For this class of problems efficient solvers exist,
for instance interior-point methods. In this work, the MATLAB toolbox cvx for convex programming [15]
has been used in combination with the solver SDPT3 [16].

Remark 1 As the optimization problem (21) is concave, the maximum likelihood estimate Φ∗ϕ of the
parameter distribution can also be computed efficiently also for nϕ � 1.

5 Application to the TNF signal transduction

In order to illustrate the properties of the proposed scheme, a simple model of the tumor necrosis
factor (TNF) signaling pathway will be analyzed in the following.

5.1 Model of TNF signaling

In multicellular organisms, the removal of infected, malfunctioning, or no longer needed cells is an
important issue. To achieve this, TNF is able to induce programmed cell death, also called apoptosis, via
the activation of the caspase cascade. On the other hand, it promotes cell survival via the inflammatory
response, specifically activation of the NF-κB pathway [17]. Here, we study a simple model for the
caspase and NF-κB activation in response to an external death receptor stimulus.

The considered model has been introduced in [18] and is based on known activating and inhibitory
interactions among key signaling proteins. Besides active caspase 8 (C8a) and active caspase 3 (C3a),
the nuclear transcription factor κB (NF-κB) and its inhibitor I-κB are considered in the model. A
graphical representation of the system is shown in Figure 2. The model is given by the ODE system

ẋ1 = −x1 +
1
2

(β4(x3)α1(u) + α3(x2))

ẋ2 = −x2 + α2(x1)β3(x3)
ẋ3 = −x3 + β2(x2)β5(x4)

ẋ4 = −x4 +
1
2

(β1(u) + α4(x3)).

(22)
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Table 1 Nominal parameter values for the TNF signaling model (22).

j 1 2 3 4 5
aj 0.6 0.2 0.2 0.5
bj 0.4 0.7 0.3 0.5 0.4

0 0.5 1 1.5 2 3 6 8 12 24
0

0.2

0.4

0.6

0.8

1

t

C
3a

Fig. 3 Single cell measurements (·) used for estimation of cell population heterogeneity.

The state variables xi, i = 1, . . . , 4 denote the relative activities of the signaling proteins C8a, C3a,
NF-κB and I-κB, in this order. The functions αj(xi) and βj(xi) represent activating and inhibiting
interactions, respectively. They are given by

αj(xi) =
x2
i

a2
j + x2

i

, j = 1, . . . , 4 (23)

and

βj(xi) =
b2j

b2j + x2
i

, j = 1, . . . , 5. (24)

The parameters aj and bj are activation and inhibition thresholds, respectively, and take values between
0 and 1. The external TNF stimulus is denoted by u. All nominal parameter values are given in Table 1.

As seen from experimental cytotoxicity assays, the cellular response to a TNF stimulus is highly
heterogeneous within a clonal cell population. Some cells die, others survive. However, the reasons for
this heterogeneous behavior are unclear, but of great interest for biological research in TNF signaling.
To understand the process at the physiological level it is crucial to consider the cellular heterogeneity,
using for example cell population modeling. We model heterogeneity at the cell level via differences in
the parameter b3. This parameter has been selected as it models the inhibitory effect of NF-κB via
the C3a inhibitor XIAP onto the C3 activity. As the amount of XIAP shows cell-cell variability, also
variations in the associated inhibition strength in the model used here are likely.

5.2 Results of parameter distribution estimation

For the evaluation of the proposed scheme, we consider an artificial experimental setup in which
the caspase 3 activity is measured at ten different time instances during a sustained TNF stimulus,
u(t) = 1. At each time instance the C3a concentration in 25 cells are measured with measurement
noise according to Equation (5), where µ1 = 0, σ1 = 0.05, µ2 = log(0.01), and σ2 = 0.3. The obtained
experimental data for a bimodal distribution in b3 are depicted in Figure 3.

To estimate Φ from this data, the proposed likelihood-based method is applied. The ansatz function
are chosen to be twelve Gaussian distributions with equally spaced center points. The results are shown
in Figure 4.

It can be seen from Figure 4 that an accurate estimate of the parameter distribution is obtained,
although the data are noisy and the amount of data is limited. Also the bimodal shape of Φ(b3) does
not cause any problems. Additionally, as the optimization problem (21) is concave, we can guarantee
that the distribution Φ with the highest likelihood is reached.
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Fig. 4 Actual (—) vs. estimated (– –) parameter distribution.

6 Summary and Conclusion

In this paper a maximum likelihood approach for estimating the parameter distributions within cell
populations is presented. The method uses a parameterization of the parameter distribution, convex
optimization techniques, and can deal with realistic noise models. Compared to classical approaches,
the method can deal with a small number of single cell measurements, as it does not rely on the
approximation of the measured population response using a density estimator.

The properties of the proposed scheme are illustrated using artificial data. It could be shown that
the proposed method yields good estimation results in case of a setup which is realistic in terms of
noise and amount of available data. Also the estimation of bimodal parameter distributions does not
cause any problems.
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