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Abstract

In many biological processes heterogeneity within clorgll gopulations is an
important issue. One of the most striking examples is a @i of cancer cells
in which after a common, identical death signal some cekisvdiereas others
survive. The reason for this heterogeneity is intrinsic exitinsic noise.

In this paper we present a mechanistic multi-scale modédtagework for
cell populations, in which the dynamics of every individaall is captured by a
parameter dependent stochastitatential equation (SDE). Heterogeneity among
individual cells is accounted for by ftierences in parameter values, modeling ex-
trinsic influences. Based on the statistical propertieb@#&ixtrinsic noise and the
SDE model for the individual cell, a partialfégrential equation (PDE) model is
derived. This PDE describes the evolution of the populademsity. To determine
the statistics of the extrinsic noise from experimentalipaton data, a density-
based statistical data model of the noise-corrupted ddtriged. Employing this
data model we show that the statistics of the extrinsic caodbeputed using a
convex optimization. Thisfécient way of assessing the parameters allows for a
so far infeasible uncertainty analysis via bootstrapping.

To evaluate the proposed method, a model for the caspasatamticascade
is considered. It is shown that for known noise propertiesuthknown parameter
densities in this model are well estimated by the proposetiode
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1. Introduction

Most of the modeling performed in the area of systems biokms at achiev-
ing a quantitative description of intracellular pathwaydence, most available
models describe a “typical cell” on the basis of experimiesidiza. Unfortunately,
experimental data are in general obtained using expergwenich average over
a cell population, e.g. western blotting. If the considgyedulation is highly het-
erogeneous, meaning that there is a large cell-to-celabdity [1, 2, 3], fitting
a single cell model to cell population data can lead to bidaity meaningless
results. To understand the dynamical behavior of hetemmgencell populations
itis crucial to develop integrated, mechanistic modelsterogeneous cell pop-
ulations.

The general need for cell population models has been readeeral decades
ago. The first publications on that topic focused on the nm#tieal descrip-
tion of proliferating cell populations [4, 5]. The correspiing models are called
population balance models (PBMs) or age-structured mpdetstheir dynamics
are in general governed by a single one-dimensional palitigrential equation
(PDE) [4, 5, 6, 7, 8, 9]. Although the PBMs are appealing frotheoretical point
of view, the limited number of dimensions which can be haddlg classical
PDE solver restricted their use. Thus, only extremely sargihgle-cell models
are employed or the single cell dynamics are neglected atelplby assuming
stationarity.

An alternative model class are the individual-based pdjmrianodels (IBPM).
In this modeling framework, the given single cell model isislated for a large
number of cells, each with flerent parameters, initial conditions, @goidrealiza-
tions of the intrinsic noise values, all specified in the matkscription [10, 11,
12, 13, 14]. The IBPMs allow for the study of complex singldtclynamics but
parameter estimation becomes mon@dlilt.

In this work, we present a mechanistic multi-scale modefraghework for
cell populations, in which the dynamics of each individuall ¢s captured by a
parameter dependent stochastitetential equation (SDE). Thereby, we consid-
ered cell-to-cell variability introduced by intrinsic aegtrinsic noise [1, 2, 3]. In-
trinsic noise is generated by the stochastic dynamics d¢f ealvidual cell which
are due to stochasticity of the chemical reactions. Extrineise and the other
hand is modeled by fferences in parameter values and initial conditions among
cells, which are both subject to a joint probability densityis leads to a rather
general modeling framework and the resulting evolutionhef $tate and output
density of the population is governed by a PDE. The numbeoofdinates of the



resulting PDE equals the sum of the numbers of state vasalié parameters of
the respective single-cell SDE model. In this work, the lgsy high-dimensional

PDE is solved by combining particle-based approaches amekaensity estima-
tion [15, 16, 17, 18].

Employing this modeling and simulation framework, we agato the prob-
lem of estimating the heterogeneity introduced by extcdnmsdise, represented
by the multivariate probability density function. Therefpwe consider high-
throughput experimental methods such as flow cytometrychivban be used to
measure concentration densities within cell populationsibtable fluorescently
labeled antibodies. Classical flow cytometry devices caasuee several thou-
sand cells per second, thus the amount of dataficsnt to obtain good statistical
properties for the measurement and estimation of the ptpnlaeterogeneity.

Given these measured single cells, a statistical modeleofrtbasured output
density is derived from the single cell measurements obthat every measure-
ment instance. Therefore, again kernel density estim@i®jsare used as they
have better asymptotic properties than commonly used restimators [7, 13].
Given a model and the measured output density estimatedtfemeasurement,
we perform a,-norm minimization over the set of possible parameter diessi
To compensate for the measurement noise, the output demsitlycted by the
model is thereby convolved with the density of the measurgmeise. Although
the resulting optimization problem seems to be extremempiex, due to the
model properties and a parameterization of the densitiespptimization prob-
lem is convex and can be solvefiieiently.

Compared to classical parameter estimation methods for$PBM7, 8] our
approach can deal with hidden variables, like the maximkelihood approach
presented in [16]. In contrast to common estimation apgres¢or SDEs [20,
21, 22], the problem studied here is more general as intreasd extrinsic noise
is considered. The main advantage with respect to [16] isthéeved simplifi-
cation of the optimization problem, which is for our appre@cconvex, quadratic
program. The resulting reduction in computation time aidve assessment of
the model uncertainty analysis using parametric bootgingd23], which is also
described in this paper. To our knowledge the presentedapbris the first one
allowing for the estimation of the statistical propertidsegtrinsic noise in the
presence of intrinsic noise in a cell population context.

The paper is structured as follows. In Section 2, the proldémstimating
the density of parameters and initial conditions is intrmetll In Section 3, we
present the statistical model for the measured data andehkanistic multi-scale
simulation model for state and output density. The emplasdnation and the
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uncertainty analysis procedure are introduced in Sectibe#re in Section 5 the
proposed methods are applied to a caspase activation matiehnificial data.
The paper is concluded in Section 6.

Notation: Time-dependent continuous random variable are denoteditatlet-
ters, e.gX;. The probability density of a continuous random variafles denoted
by p(X, t). The dimension oK; is ny, X; € R™.

2. Theoretical background

In this section the problem setup is defined. In particula,imiroduce the
considered model class, the available measurement dath@mpdoblem formu-
lation.

2.1. Individual-based population model

For the purpose of this work, a model of a biochemical reaatietwork in a
population ofm cells is given by a collection of stochastididrential equations,

dX® = p(x®, PO, tydt + o-(X?, PO, tyd W,

YO = yx®O PO 1), ieqd,...,m), (1)
with state variableX!” e R™, initial stateX{) € R™, measured variableg” e
R™, Wiener processed/’ ¢ R™, and the paramete®) € R™. The indexi
specifies the individual cells within the population. ThegmaetersP® can be
kinetic constants, e.g. reaction rates or bindifithaies. The &ect of cell-cell
interaction on the considered pathway is assumed to begitagli which is the
case in manyn vitro lab experiments where the response of the individual cells i
predominantly influenced by external stimuli. The vectddBe ando describing
the deterministic and the stochastic evolution of a singlk espectively, and are
locally Lipschitz. The output mappingis continuous.

In the following, heterogeneity within the cell populatimodeled using
intrinsic and extrinsic noise. Intrinsic noise is introeddcby the Wiener pro-
cess, whereas extrinsic noise is modeled fkedential parameter values and ini-
tial conditions among individual cells. The density of pasgersP® and ini-
tial conditionsX}) is given by a probability densitpo(Z) : R™ — R, with
Z0 =[x, (PMYTT andn; = ny + ne. The probability density functiope(Z)



is part of the model specification and the parameters andlindanditions of cell
i are subject to the probability density

Przl) e Q) = fg po(Z)dZ (2)

As the initial conditions are unknown and hence need to beidered as addi-
tional parameters, we will refer foy(Z) as parameter density.

Note that if the number of cellm is finite, the cell population is simply a
collection ofmindividual cells. Hence, we are in the IBPM framework.

2.2. Measurement data

For the study of heterogeneous cell populations high-tjinput cell popula-
tion experiments are exploited in this paper. Using thepermental techniques
protein concentrations within thousands of cells can besorea at every mea-
surement instancé, k = 1,..., N. This yields the snapshot data

Dy = {(Wtk”,tk)}idk, k=1,...,N, (3)

in which Y{” is the measured output of the ceindZ is the index set of the cells
measured at tim&. Note that in general it is hard to measure single-cell time
series data: cells may move between measurement instanaesremoved from
the population in order to obtain the measurements, andib®pleaching fect
limits the time-span that can be observed. On the other h&ethssical flow
cytometric analysis is applied the sampled cells can benasgtio be independent
and identically distributed and the number of measuredaell = card(y), is
large. Hence, an approximation of the output density isiptess

Like all measurement devices, also high-throughput flleeese measure-
ments are subject to noise, and the measured output deperlas actual output
by the noise model ' o

e~ pYOIVY). (4)

In the following, we do not assume any specific noise distidiou It is merely
required that the noise distribution is smooth. For expental setups in biology,
the measurement noise often has additive and multipleatvnponents [24, 25].

2.3. Problem statement
Given the above setup, the problem we are concerned with is:

Problem: Given the measurement dafd, k = 1,...,N, the cell population
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model (1), and the noise model (4), determine the parametesity po(Z) and its
uncertainty.

Unfortunately, estimation opo(Z) using a cell population model with a finite
number of cells and discrete sampled data is fairfialilt as no single cell tra-
jectories are available. A far more natural approach is écaudensity description,
as the available measurement data can be interpreted agptesiawn from the
probability density function of the output. This inter@gbn is also quite appeal-
ing from a modeling point of view as the number of cells coasgd in a standard
lab experiment is on the order of 48 10’ and hence nevertheless too large to
be simulated on an individual basis. In the next section a Rfel for the
probability density of the output and a density model forieasurement data is
derived.

3. Density-based population modeling

As outlined in the previous section, a continuous staastiwodel for the mea-
surement data, as well as for the evolution of the state atglibdensity would
be preferable. These two aspects are addressed in theifajlow

3.1. Density model of measurement data

The dataDy collected by the considered measurement devices is a sample
drawn from the distribution of the measured output, whictiéaoted byp(Y, ti).

As p(Y,ty) is a probability density, classical density estimatiortmoels can be
employed for estimating(Y, ty) from the given sampl&.

In this work, the problem of determining(Y, ty) from Dy is approached us-
ing kernel density estimators. Kernel density estimatoesren-parametric ap-
proaches to estimate probability densities from samplad {0]. They are
widely used and can be thought of as placing probability “psirat each ob-
servation, as depicted in Figure 1. These “bumps” are theekdunctions’,
with [ % (Y,YO,h)dY = 1. Note that here only the equations for the one-
dimensional case are given. The extension towards highegrdiions is straight-
forward and can be found in [19]. In this work, a Gaussian &keisgiven by

N N YA
%(Y,ﬂk>,h):ﬁexp{_§( = b (5)

with standard deviatioh. In this contexth is also called smoothing parameter in
the literature.
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Figure 1: Gaussian kernel density estimate (—p@r_f, t) for the measured outpu\_éi) (e) and the
associated Gaussian kernels)(

Given the kerneK, an estimator of the probability density for a given sample

Dy is
p(Y. ) = ZW (Y. Y. h), (6)
|eIk

in which my is the number of cells measured at titpgthe cardinality of7y).
The selection of the smoothing paramees crucial and depends strongly on
m. In this workh is chosen using the filusion-based methods presented in [26].
This methods outperform classical selection approachiéeicase of multi modal
densities, which are common in biological processes [1P,Aslny is considered
to be large it can be assumed that the error of the estimatipditodensity with
respect to the actual output density is small.

3.2. PDE model of density evolution

As outlined previously, a continuous model for the outputsiy is desirable
for the purpose of parameter identification. Therefore, & Piddel for the cell
population is derived from the IBPM introduced in Sectiod.2Instead of de-
scribing individual cells, we go to the next higher scale ammtel the evolution
of the cell populations directly. This is done without nexgieg the dynamics of
the individual cells, resulting in a mechanistic populatioodel.

At first the single cell model is transformed to an extendatksspace model

(L) »(20) @iy ()
dZ“):(“(Z‘ 4 ’t)]dt+[0(zt 4 ’t)]dwgi)
0 0 (7)
YO =z Z),



in which the parameters are appended to the state v&ftor, [(Z")T, (Z*)T]T
with ) = XO andz®) = PO, This system can also be written as

dZ" = a(z", tydt+ 52", tydw
Y0 =720,
in which the initial conditions are drawn from the paramellietribution,Z(()i) ~ Po(2).
Based on (8), the PDE model for the population density isvedrivith state

variable p(Z, t|po). The density functionp(Z, t|po) provides the probability of
drawing at random a cell from the population with sta‘t{é)se Q at timet,

(8)

P e ) = f B(Z.tipo)dZ ©)

The PDE model of the time evolution @{Z, t|py) can be derived directly, as the
state vector of the augmented SDE (8) contains all inforonadbout the individ-
ual celli. Thus, we are in the classical SDE setting. The evolutiomefdensity
of the augmented state vector is described by the FokkaecRkquation [27, 28],

%p(z, t|pg) = — ;‘ aiz. [ (Z, t)p(Z, tipo)]

1GG P . (10)
"3 2. 273z |59(Z.95(Z. OPZ tIpo) |
with initial condition
VZ e R™ 1 p(Z,0po) = po(2). (11)

The Fokker-Planck equation (10) is quasilinear and itstewiuexists for sifi-
ciently smoothu{:), 6(-), and smooth initial conditiongy(Z) [29].

Employing the state densitg(Z, t|py), the output densityp(Y, t|py) is com-
puted via marginalization,

PR = [ POYIZ,DP(Z Upo)dZ (12)

As the measurements are noise corrupted, the density of éasured outputs
p(Y, t|po) is obtained from the actual output dengiy, t|py) by convolution with
the noise model:

(V. t) = [ p(YIV)pCY o)l (13)
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3.3. Numerical solution of PDE

In order to study the time evolution of the output dengfy, tipo) and the
measured output densitY, t|po), system (10) has to be solved for givps(2).
As p(Z t|po) is defined on thez-dimensional space, standard grid-based solvers
are not able to solve system (10) for = nx + np > 3. Theoretically, the methods
of characteristics can be used [29, 30] but for the high-dsrenal system we are
going to study, also this method idf@lcult to apply as it requires 1) gridding and
2) the calculation of high-dimensional integrals to detiewrthe output density.
Instead, a stochastic method is used [16, 17, 18], which @asvkrfrom particle
filtering [31].

This stochastic method is based on a particle descriptidheomodel, which
is in our case equivalent to the cell ensemble model (1). Tapedep(Y, t/py), at
first a samplé(X)), PO)}s ,, is drawn frompy(Z), wheres s the sample size. For
this sample the single cell model (1) is simulated, resglima set of simulated
outputs{Y{"}2 ,. The outputr{” is then corrupted by noise according to (4) result-
ing in {Y"}3 .. Given the sampleY"}* , a numerical approximation qi(Y, t|po)
can be determined using the kernel density estimator destin Section 3.1.

This numerical stochastic approximation of the deng(ty, t|po) can be shown
to converge as — oo [15]. Thus,p(Y,t|pg) can be approximated also for high-
dimensional nonlinear single-cell models. The advantddkis approach is that
p(Y,t|po) can be computed without calculating the in general highetisional
state density(Z, t|po).

Remark 1. The sample size s required to achieve a good approximatideof
state and output density increases with the dimensionafithe corresponding
densities. Fortunately, in the following only the outputsi¢y is required which
merely depends on the number of measurandased during one experiments.
For typical experimental setups s not larger than three or four, rendering the
problem tractable.

4. Parameter estimation

As mentioned in Section 2 the problem studied in this workhes ¢stima-
tion of the initial condition and parameter densgy and its uncertainty. These
problems are approached in the following by employing thesdg-based model-
ing approach derived in Section 3 in combination with par@mzation, convex
optimization, and parametric bootstrapping.



4.1. Estimation of parameter density

In this paper, we approach the problem of estimappfrom Dy by minimiz-
ing thel,-norm of the model-data mismatch,

. (14)

N
3(Po) = D ||pCY. ) = pCY. tl o)
k=1

where p(Y, t) is the density of the measured noisy output a¥, t|po) is the
predicted density of the measured noisy output obtainedrbylation with the
parameter density estimafg(Z). Note that the objective functionalpo) pe-
nalizes the dterence between data densitfy, t,) and predicted noise corrupted
output densityp(Y, t|Po). This is possible as due to the large number of measured
cells per measurement instance, we have good statistidseoméasurement er-
ror. We note that a comparison of the measured output dep@ityt,) with the
noise-free output density(Y, tPo) yields in general worse estimation results for
Po(Z) than the comparison of the measured output demgltyt,) with predicted
noise-corrupted output densyY, t|Po). This is particularly the case for datasets
Dy obtained with high measurement noise levels.

Remark 2. Different methods are available to compare population modetyto
tometry data. In particular norm distances [32, 17] or likedod functions [16,
18] are commonly used. In this work amorm distance has been chosen, as the
evaluation of this objective function is computationalheap. If the number of
measured cells is small, likelihood functions may be swperi

According to the objective functional, the optimal parameter densipy(Z)
is the solution of
minimize J(Po)
Po

subjecttof Po(2)dZ =1 (15)
R"z

VEER™ : Po(Z) = 0,

in which the two constraints enforce thp§(Z) is a probability density. Un-
fortunately, the optimization problem (15) is infinite dinsonal. Therefore, a
parametrization opg,

Pos(2) = ) @A), (16)
j=1
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with a weighting vectop € R™ is introduced. The ansatz functions are prob-

ability densitiesAl(Z) > 0 andenz Al(Z2)dZ = 1. To promote simplicity of the
resulting optimization problem, the ansatz functian$zZ) for po(Z) are chosen
to be head functions, as depicted in Figure 2. This yieldssthmplified, finite-

dimensional optimization problem,

minimize  J(Po,)
¢ 17)
subjectto 1T =1, ¢ > 0,

in which1 = [1,...,1]" € R" denotes the volume of thgth head function.
The optimal solution of (17) is denoted ky. Note that ansatz functions!(2)
other than head functions are possible, e.g. polynomialoarri€r series, but
the constraints ensuring thpd ,(Z) is a probability density are likely to be more
difficult to handle.

To solve the parameterized optimization problem (17) tresglinearity of the
density-based population model (10) is employed. As themgsition principle
holds [29] for (10), the outpud(Y, t|po,,) can be written as the weighted sum

Ny . '
p(Y. tlPo,) = > ¢ p(Y, tIAY), (18)

j=1

wherep(Y, t|A') is the output density obtained from simulation with(Z) as den-
sity of parameters and initial condition. This allows th&renulation of the ob-
jective function to

N 2

I(Poy) = )

k=1

p(Y. 1) = > @ip(Y, tdA)

=1

2

Employing this (17) can finally be written as

N
minimize Z (A — b)) T W (A — by)
4 k=1 (29)

subjectto 1T =1, ¢ > 0,

where the integral - |5 has been approximated, e.g. using the trapezoidal rule.
The column vectoby contains hereby the valuggy, t,) at the grid points of the
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Figure 2: lllustration of head-type ansatz function$z).

discretization in the stafgarameter space. Equivalently, theh column of A,
contains the values qi(Y, t,JA)) at the grid points. The matri¥ is a constant
positive definite weighting matrix, determined by the chospproximation of
| - 5. Given (19) with the optimal weighting vectgr, the density of parameter
and initial conditions with the smallestnorm model-data mismatch - (Z).

Note that (19) is a convex, quadratic problem. Hence, fastegence to the
global optimum can be ensured.

Remark 3. Although the derived convex optimization problem can beesbéf-
ficiently, high-dimensional parameter spaces still causiblems. The reason is
the growing dimension of the weighting parametensith increasing dimension
number. For high-dimensional systems the ansatz functians to be chosen
carefully, or an iterative refinement of the ansatz fundishould be applied.
Iterative methods may allow that only regions are high pitubty density are
resolved in detail.

4.2. Analysis of model uncertainty

Besides the optimal densityy-(Z), the assessment of the reliability of a
model also requires information about the model uncer&EntThis is of par-
ticular importance when identifiability cannot be guaraudteln the following, we
present a bootstrap procedure to evaluate the uncertdittyg @stimatgg .- (Z).
Bootstrapping is a data-driven or model-driven approaaimfstatistical inference
commonly used to gather alternative versions of the singléstic. This enables
the calculation of confidence intervals and hence the etraluaf identifiability
and uncertainty.

In literature, many dferent types of bootstrap schemes are available. The
most frequently used are case resampling, residual resagnpind parametric
bootstraps [23, 33]. As in biology, measurement data aendiinited, case re-
sampling is not the method of choice. Also residual resamgpis dificult to

12



apply, as in contrast to other applications distributiorstead of individual data
points are compared. Developing a reasonable resampliaiggy for distribu-
tions may be dficult. Therefore, we present the application of parametiatb
strapping for the calculation of confidence intervalsggg-(Z) [23, 33, 34, 35].

The procedure of parametric bootstrapping consists ofdtaps, as illustrated
in Figure 3. In a first step, the set of available measuremata® = {D}}, is
used to determine an estimaig,(Z). This is the comon estimation step. The ob-
tained estimat@o,+(Z) is in a second step used to generagdternative, artificial
realizations of the measurement data

oM, ol pBl D, (20)
The artificial datapll! = {Z)[(”}':_l, with Z)[k” = {(ﬁ(k')’“],tk)}ie] , are sampled from
the predicted distribution (including noise) and have thes size as the original
data set. Hencel!! are typical measurement data we would obtain be studying
a cell population with the parameter and initial state dgng,-(Z). In the third
step, for each set of artificial dafal! the estimation is performed and the optimal
densityp{(){L* (2) is computed, yielding

B 5L L @
Given this set of estimated densities a statistical anslggierformed to determine
the confidence intervals. In particular, the confidencervats [ﬁg};’l (2), 05 (2)]
are computed [23], e.g. with 95% or 99% confidence level.

Parametric bootstraps have been shown to provide reliaima&tes of the
confidence intervals. In particular, the uncertainty eates are far more reliable
than those obtained using local methods [35]. Unfortugatbk calculation of
bootstraps is often computationally demanding as the astim problem has to
be solved many times (> 1) [34, 35, 36]. This often limits the use of this method
to small systems, and there are only few examples in litezatdnere it has been
applied for the uncertainty analysis of parameters of PI3s T]. Luckily, due
to the facts that:

¢ the predicted output densitiqnﬁ\?, t/A)) and hence the matrice can be
reused, and that

e a convex formulation for the estimation problem (15) hasdeend,

redoing the estimation is computationall§ieient. Given the dat®!/! the prob-
lem (19) can be solved in seconds even for large systems.enhisles the usage
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Figure 3: lllustration of parametric bootstrapping praseias a tool for model-driven uncertainty
analysis. For a detailed description of the workflow we ré&dgP3, 35].

of bootstrapping for uncertainty analysis of models of egeneous cell popula-
tions.

Summing up, in this section we presented a density-basatefvark of model-

ing and data handling for heterogeneous cell populatiohs ffamework allows

the formulation of the considered parameter estimatioblpro as a convex pro-
gram. This ensures computationfil@ency and allows for anfecient parametric

bootstrapping analysis of the confidence intervals.

5. Application to the caspase cascade

Programmed cell death, also called apoptosis, is an impoptaysiological
process to remove infected, malfunctioning, or no longedee cells from a mul-
ticellular organism. Pathways to induce apoptosis corvatghe caspase activa-
tion cascade [38]. A mathematical model for this network esn proposed by
Eissinget al.[39, 40]. Here, we consider the caspase activation in resptman
external tumor necrosis factor (TNF) stimulus. As knowmifrexperimental cy-
totoxicity assays, the cellular response to a TNF stimdimghly heterogeneous,
with some cells dying and others surviving. To understaegtiocess at the phys-
iological level it is thus crucial to consider the cellulatérogeneity induced by
intrinsic and extrinsic noise, using for example cell p@tiwn modeling.

The core properties of the TNF-induced proapoptotic sigraadsduction in
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Figure 4. Schematic of the caspase activation cascade.inDoos arrows-f) indicate fully
deterministic reactions and regulations while dashedaar(o») indicate stochastic components.

a single cell, which is depicted in Figure 4, can be describethe 14 reactions
provided in Table 1. The proapoptocic signaling cascadedisded by active TNF
receptors, TNFR, which proteolytically cleave caspase8 y@lding active cas-
pase 8, C8 Subsequently, C&leaves caspase 3, C3, to active caspase 3, C3
which in turn cleaves C8, completing a positive feedbackIdm avoid apoptosis
initiation for low TNFR concentrations, the caspase 8- a@iehdsociated RING
protein, CARP, and the inhibitor of apoptosis protein, |1Afd C8 and C3,
respectively. Thereby, C&nd C3 are inactivated. Besides the regulatory inter-
action all chemical species are continuously degraded &)d_3, CARP, and
IAP are synthesized.
The dynamics of the overall signal transduction pathwaygareerned by the
SDE:
d[C8]t = (—Vl - V3 + Vll)dt + O'k]_ldW]_’t
d[C87]; = (+V1 + V3 — V4 — Vg)dt
d[C3]t = (—V2 + Vi2)dt + oki2dWo
d[C3]t = (+V2 — V5 — vyp)dt
d[CARP]t = (—V4 + V13)dt + 0'k13dV\/3,,t
d[lAP]t = (—V5 -V + V14)dt + O'k14dW4’t
d[C8"~CARP} = (+Vv4 — v7)dt
d[C3*~|AP]t = (+V5 - Vg)dt,

in which squared brackets denote the number of the respegtolecule. As
gene expression is a highly stochastic process [1, 41]ejprasynthesis involves

(22)
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a stochastic component with = 0.4 andW, i = 1,...,4, being a Wiener pro-
cesses. The remaining reactions are model fully detertiaally as the molecule
abundance is high. The presented model is an extensions# hresented in [39,
40]. Also, some parameters have been adapted to fit avadabdefor non-small
lung cancer cell line NCI-H460.

As the system (22) is dij its simulation is challenging. The Euler-Maruyama
scheme and the Milstein scheme, which are the most commeaty8DE solvers,
fail to provide good results for reasonable step-sizes.r&fbee, the trapeziodal
rule is employed which outperforms for this system all othelvers evaluated
in [42]. The time increment is set to four minutes.

Given the single cell model, extrinsic cell-to-cell varilél is modeled by a
log-normally distributed production rate of the inhibitof apoptosis IAP K4,
and a log-normally distributed amount of active TNF-reocegomplexes on the
cell membrane, TNFR. These two quantities were chosen askitown from
experiments that there is a high cell-to-cell variabilithiesh may be caused by
pathways which are not included in the model. Especiallycitiecentration of
IAP molecules contained in a cell is highly variable, and aateon in IAP pro-
duction is known to fiect cell death considerably [43]. Besides parameters also
initial conditions among individual cells arefférent. The initial condition of
cell is drawn from the steady state distribution of the SDE) @otained for the
parameter valug!) for [TNFR]® = 0. Due to this dependence of the initial state
on the parameters, no additional degrees of freedom awdunted. Hence, the
model describing the evolution of the population density19-dimensional PDE.

In the remainder of this section, we study the possibilityesfimating the
densitypp(kis, [TNFR]) from population data of active caspase 3 obtainefidyy
cytometry, ' _

Yy = [C3TY. (23)
The measurement noise we considered contains additiveamenpand multi-
plicative components, ' '

Y_t(k') = eth(k') +€, (24)
and is therefore rather realistic [25]. Both componesitende*, are log-normally
distributed. Median and standard deviation @fe= 0 ando™ = 0.05 for €*, and
ut =6.5andoc* = 0.25 for e*, respectively. _

The statistical model of the measured noisy output denp(ly, t) is shown
in Figure 5. It is determined using artificial measuremenadd 1¢* cells at the
measurement instancgs k = 1,...,6. This is a realistic number for standard
cytofluorometric experiments.
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Table 1: List of reactions and parameter values describiagpgoptotic signaling. The molecule abundance is measamadlecules per

cell, =5, and the time unit is minute, min. For further informationreactions and parameter values we refer to [39].

| || Reactions Reaction rates Parameter values and units |

Ry C8+TNFR 2 C8 +TNFR | vi = k[TNFR][C8] ki=10-10° el | [TNFR]=20-10"2 19
Ry C3+C8 — CIF+C8 | vo=k[C3][C8"] kp=40-10° el

Rs C3¥+C8 — C3+C8 Vs = kg[C3*][C8] ks=10-10° el

Ry || C8 +CARP 2 C8~CARP | v4=ky[C8][CARP] -k _4[C8*~CARP] ke =50-10% el kg=21-100 L
Rs C3+IAP 2 C3'~IAP Vs = ks[C3*][IAP] — k_s[C3*~IAP] ks=50-10%4 cel ks=21-100
Rs CI+IAP - C3 V6 = ke[C3*][IAP] ke=30-10% el

R; || C8~CARP - v7 = kr[C8'~CARP] k7 =116-107 &

Rs C3~IAP - Vg = kg[C3"~IAP] ke=173-102 &

Ro cg - Vo = ko[C8'] ko =58-10°

Ruo c3 - V1o = kio[C3'] kio=58-10° &5

Ri1 0 =2 C3 vi1 = ki1 - k11[C3] ki1 = 819-10" el k11=39-107° ﬁlﬁ
Ri2 0 = C8 V12 = k12 — k 12[C8] kiz = 5.07-107  mieg k12=389-10° &5
Ria ® 2 CARP v13 = ki3 — k 13[CARP] kiz=4.0-10""  mhg k13=10-10° &5
Ri4 0 =2 |IAP V14 = ki — K 14[IAP] kg = 4.64-10" 5o, k14=116-107 7




Figure 5: Statistical modai(Y, t) of artificial noise corrupted measurement data of actispase
3 derived from the 1®measured cells.

Based on these data, the estimation approach presentedtioré is used
to obtain an estimate for the parameter density. For thipqae the considered
parameter set is divided using a2 grid, with logarithmically distributed grid
points. The grid points are used as edge and center poirttg @fnsatz functions
Al(kg, [TNFRY)) of o, (ks [TNFRY]), resulting in 144 weighting parametess
For illustration purposes only the estimation results i@ marginalized densities,

o (Kue) = f o, (ke [TNFR])ATNFR]

py (25)

o, ((TNFR]) = f Bo. (ke [TNFR])dkes
R:

are depicted in Figure 6.

It is obvious that the parameter densities estimated frenal#ta approximates
the true parameter density well. Especially if we consiferfinite number of de-
grees of freedom, limited time resolution of the data andptiesence of intrinsic
noise, the achieved results are very satisfying. As in appbns the true densi-
ties are not known, the uncertainty of this estimate has tstib@ied. Therefore,
the above presented approach is used and a parametricrapatsthr = 10°
members has been generated. The resulting 98% confideeceaistestimated
from these bootstraps reveal that the data tigant to estimateg,-(kis) and
Po+ ([TNFR]) with reasonably small uncertainties. Note that tonfidence in-
terval provides only information about uncertainty of tteeametrized density.
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Figure 6: True (—) vs. estimateds() parameter densities, with grid pointg.( The 98% confi-
dence intervalx{) of the estimated parameter densities is shown as backdroun

The whole example indicates that even though there is a faggsurement
error and intrinsic noise on the single cell level, due todysatistics at the popu-
lation level, the actual parameter density can be estineatedrately. Hence, the
extrinsic cell-to-cell variability within the cell populi@n can be unraveled. This
is true also for higher noise levels if the number of measuwrdls is increased.
Furthermore, this study shows that in principle, measuoimg concentration can
give enough information to estimate the density of multipteameters, if the
output density is sensitive with respect to these paraseter

6. Summary and outlook

Heterogeneity in cell populations is an important issugdégearch in systems
biology. However, so far only few models describing heterogpus populations
of cells with more than one intracellular state variabledha@en developed. In this
paper a PDE model describing the time evolution of the statesitly is derived
for systems with intrinsic and extrinsic noise. We focuseteby in particular on
the distribution of the measured outputs.

In the second part of the paper, the model of the noise cadupteasured
outputs and its particular properties are used to estinhat@arameter densities
underlying the heterogeneity. Therefore, a density-bassiktical model of the
sampled single cell is developed and applied in combinatitm convexl,-norm
optimization. To determine the uncertainty of the estinagb@arametric bootstrap-
ping approach has been presented, which again employs abé&epr structure.
The presented approach is novel as it allows the estimafidheostatistics of
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extrinsic noise despite the presence of intrinsic noisegudficient convex opti-
mization techniques. Also, the general idea behind theeofarmulation of the
estimation problem is transferable and may be used in cefegkels.

Finally, we applied the proposed approaches to artificish @d a medium
size bistable system modeling the caspase activation@asttacould be shown
that the developed estimation approach yields good estimegsults in case of
a setup which is realistic in terms of noise and amount oflalks data. Fur-
thermore, the bootstrapping-based uncertainty analpgpioach could be used to
study the information contained in the measurement datatahe parameters to
be estimated as well as the parameter uncertainties.

Concerning future research several open questions haveidestified. One
key aspect is the extension of the model class towards aetksshong cells. Re-
garding the method, especially other parameterizatiorcgapes for the densities
have to be considered, to reduce the number of requiredzaiusettions. This is
crucial to enable the analysis and estimation of high-dsimral densities.
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