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aInstitute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
bInstitute for Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany

Abstract

In many biological processes heterogeneity within clonal cell populations is an
important issue. One of the most striking examples is a population of cancer cells
in which after a common, identical death signal some cells die whereas others
survive. The reason for this heterogeneity is intrinsic andextrinsic noise.

In this paper we present a mechanistic multi-scale modelingframework for
cell populations, in which the dynamics of every individualcell is captured by a
parameter dependent stochastic differential equation (SDE). Heterogeneity among
individual cells is accounted for by differences in parameter values, modeling ex-
trinsic influences. Based on the statistical properties of the extrinsic noise and the
SDE model for the individual cell, a partial differential equation (PDE) model is
derived. This PDE describes the evolution of the populationdensity. To determine
the statistics of the extrinsic noise from experimental population data, a density-
based statistical data model of the noise-corrupted data isderived. Employing this
data model we show that the statistics of the extrinsic can becomputed using a
convex optimization. This efficient way of assessing the parameters allows for a
so far infeasible uncertainty analysis via bootstrapping.

To evaluate the proposed method, a model for the caspase activation cascade
is considered. It is shown that for known noise properties the unknown parameter
densities in this model are well estimated by the proposed method.

Key words: cell population, parameter estimation, density estimation, convex
optimization, bootstrapping, apoptotic signaling
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1. Introduction

Most of the modeling performed in the area of systems biologyaims at achiev-
ing a quantitative description of intracellular pathways.Hence, most available
models describe a “typical cell” on the basis of experimental data. Unfortunately,
experimental data are in general obtained using experiments which average over
a cell population, e.g. western blotting. If the consideredpopulation is highly het-
erogeneous, meaning that there is a large cell-to-cell variability [1, 2, 3], fitting
a single cell model to cell population data can lead to biologically meaningless
results. To understand the dynamical behavior of heterogeneous cell populations
it is crucial to develop integrated, mechanistic models forheterogeneous cell pop-
ulations.

The general need for cell population models has been realized several decades
ago. The first publications on that topic focused on the mathematical descrip-
tion of proliferating cell populations [4, 5]. The corresponding models are called
population balance models (PBMs) or age-structured models, and their dynamics
are in general governed by a single one-dimensional partialdifferential equation
(PDE) [4, 5, 6, 7, 8, 9]. Although the PBMs are appealing from atheoretical point
of view, the limited number of dimensions which can be handled by classical
PDE solver restricted their use. Thus, only extremely simple single-cell models
are employed or the single cell dynamics are neglected completely by assuming
stationarity.

An alternative model class are the individual-based population models (IBPM).
In this modeling framework, the given single cell model is simulated for a large
number of cells, each with different parameters, initial conditions, and/or realiza-
tions of the intrinsic noise values, all specified in the model description [10, 11,
12, 13, 14]. The IBPMs allow for the study of complex single-cell dynamics but
parameter estimation becomes more difficult.

In this work, we present a mechanistic multi-scale modelingframework for
cell populations, in which the dynamics of each individual cell is captured by a
parameter dependent stochastic differential equation (SDE). Thereby, we consid-
ered cell-to-cell variability introduced by intrinsic andextrinsic noise [1, 2, 3]. In-
trinsic noise is generated by the stochastic dynamics of each individual cell which
are due to stochasticity of the chemical reactions. Extrinsic noise and the other
hand is modeled by differences in parameter values and initial conditions among
cells, which are both subject to a joint probability density. This leads to a rather
general modeling framework and the resulting evolution of the state and output
density of the population is governed by a PDE. The number of coordinates of the
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resulting PDE equals the sum of the numbers of state variables and parameters of
the respective single-cell SDE model. In this work, the resulting high-dimensional
PDE is solved by combining particle-based approaches and kernel density estima-
tion [15, 16, 17, 18].

Employing this modeling and simulation framework, we approach the prob-
lem of estimating the heterogeneity introduced by extrinsic noise, represented
by the multivariate probability density function. Therefore, we consider high-
throughput experimental methods such as flow cytometry, which can be used to
measure concentration densities within cell populations by suitable fluorescently
labeled antibodies. Classical flow cytometry devices can measure several thou-
sand cells per second, thus the amount of data is sufficient to obtain good statistical
properties for the measurement and estimation of the population heterogeneity.

Given these measured single cells, a statistical model of the measured output
density is derived from the single cell measurements obtained at every measure-
ment instance. Therefore, again kernel density estimators[19] are used as they
have better asymptotic properties than commonly used naiveestimators [7, 13].
Given a model and the measured output density estimated fromthe measurement,
we perform al2-norm minimization over the set of possible parameter densities.
To compensate for the measurement noise, the output densitypredicted by the
model is thereby convolved with the density of the measurement noise. Although
the resulting optimization problem seems to be extremely complex, due to the
model properties and a parameterization of the densities, this optimization prob-
lem is convex and can be solved efficiently.

Compared to classical parameter estimation methods for PBMs [6, 7, 8] our
approach can deal with hidden variables, like the maximum likelihood approach
presented in [16]. In contrast to common estimation approaches for SDEs [20,
21, 22], the problem studied here is more general as intrinsic and extrinsic noise
is considered. The main advantage with respect to [16] is theachieved simplifi-
cation of the optimization problem, which is for our approach a convex, quadratic
program. The resulting reduction in computation time allows the assessment of
the model uncertainty analysis using parametric bootstrapping [23], which is also
described in this paper. To our knowledge the presented approach is the first one
allowing for the estimation of the statistical properties of extrinsic noise in the
presence of intrinsic noise in a cell population context.

The paper is structured as follows. In Section 2, the problemof estimating
the density of parameters and initial conditions is introduced. In Section 3, we
present the statistical model for the measured data and the mechanistic multi-scale
simulation model for state and output density. The employedestimation and the
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uncertainty analysis procedure are introduced in Section 4, before in Section 5 the
proposed methods are applied to a caspase activation model with artificial data.
The paper is concluded in Section 6.

Notation:Time-dependent continuous random variable are denoted by capital let-
ters, e.g.Xt. The probability density of a continuous random variableXt is denoted
by p(X, t). The dimension ofXt is nX, Xt ∈ RnX .

2. Theoretical background

In this section the problem setup is defined. In particular, we introduce the
considered model class, the available measurement data andthe problem formu-
lation.

2.1. Individual-based population model

For the purpose of this work, a model of a biochemical reaction network in a
population ofm cells is given by a collection of stochastic differential equations,

dX(i)
t = µ(X

(i)
t ,P

(i), t)dt+ σ(X(i)
t ,P

(i), t)dW(i)
t ,

Y(i)
t = γ(X

(i)
t ,P

(i), t), i ∈ {1, . . . ,m},
(1)

with state variablesX(i)
t ∈ RnX, initial stateX(i)

0 ∈ RnX , measured variablesY(i)
t ∈

R
nY, Wiener processesW(i)

t ∈ RnW, and the parametersP(i) ∈ RnP. The indexi
specifies the individual cells within the population. The parametersP(i) can be
kinetic constants, e.g. reaction rates or binding affinities. The effect of cell-cell
interaction on the considered pathway is assumed to be negligible, which is the
case in manyin vitro lab experiments where the response of the individual cells is
predominantly influenced by external stimuli. The vector fieldsµ andσ describing
the deterministic and the stochastic evolution of a single cell, respectively, and are
locally Lipschitz. The output mappingγ is continuous.

In the following, heterogeneity within the cell populationis modeled using
intrinsic and extrinsic noise. Intrinsic noise is introduced by the Wiener pro-
cess, whereas extrinsic noise is modeled by differential parameter values and ini-
tial conditions among individual cells. The density of parametersP(i) and ini-
tial conditionsX(i)

0 is given by a probability densityp0(Z) : RnZ → R+ with
Z(i)

0 = [(X(i)
0 )T, (P(i))T]T andnZ = nX + nP. The probability density functionp0(Z)
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is part of the model specification and the parameters and initial conditions of cell
i are subject to the probability density

Pr(Z(i)
0 ∈ Ω) =

∫

Ω

p0(Z)dZ. (2)

As the initial conditions are unknown and hence need to be considered as addi-
tional parameters, we will refer top0(Z) as parameter density.

Note that if the number of cellsm is finite, the cell population is simply a
collection ofm individual cells. Hence, we are in the IBPM framework.

2.2. Measurement data

For the study of heterogeneous cell populations high-throughput cell popula-
tion experiments are exploited in this paper. Using these experimental techniques
protein concentrations within thousands of cells can be measured at every mea-
surement instance,tk, k = 1, . . . ,N. This yields the snapshot data

Dk =
{(

Ȳ(i)
tk , tk
)}

i∈Ik
, k = 1, . . . ,N, (3)

in which Ȳ(i)
tk is the measured output of the celli andIk is the index set of the cells

measured at timetk. Note that in general it is hard to measure single-cell time
series data: cells may move between measurement instances or are removed from
the population in order to obtain the measurements, and the photobleaching effect
limits the time-span that can be observed. On the other hand,if classical flow
cytometric analysis is applied the sampled cells can be assumed to be independent
and identically distributed and the number of measured cells, mk = card(Ik), is
large. Hence, an approximation of the output density is possible.

Like all measurement devices, also high-throughput fluorescence measure-
ments are subject to noise, and the measured output depends on the actual output
by the noise model

Ȳ(i)
tk ∼ p(Ȳ(i)

tk |Y
(i)
tk ). (4)

In the following, we do not assume any specific noise distribution. It is merely
required that the noise distribution is smooth. For experimental setups in biology,
the measurement noise often has additive and multiplicative components [24, 25].

2.3. Problem statement

Given the above setup, the problem we are concerned with is:

Problem: Given the measurement dataDk, k = 1, . . . ,N, the cell population
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model (1), and the noise model (4), determine the parameter densityp0(Z) and its
uncertainty.

Unfortunately, estimation ofp0(Z) using a cell population model with a finite
number of cells and discrete sampled data is fairly difficult as no single cell tra-
jectories are available. A far more natural approach is to use a density description,
as the available measurement data can be interpreted as a sample drawn from the
probability density function of the output. This interpretation is also quite appeal-
ing from a modeling point of view as the number of cells considered in a standard
lab experiment is on the order of 104 − 107 and hence nevertheless too large to
be simulated on an individual basis. In the next section a PDEmodel for the
probability density of the output and a density model for themeasurement data is
derived.

3. Density-based population modeling

As outlined in the previous section, a continuous statistical model for the mea-
surement data, as well as for the evolution of the state and output density would
be preferable. These two aspects are addressed in the following.

3.1. Density model of measurement data
The dataDk collected by the considered measurement devices is a sample

drawn from the distribution of the measured output, which isdenoted byp(Ȳ, tk).
As p(Ȳ, tk) is a probability density, classical density estimation methods can be
employed for estimatingp(Ȳ, tk) from the given sampleDk.

In this work, the problem of determiningp(Ȳ, tk) fromDk is approached us-
ing kernel density estimators. Kernel density estimators are non-parametric ap-
proaches to estimate probability densities from sampled data [19]. They are
widely used and can be thought of as placing probability “bumps” at each ob-
servation, as depicted in Figure 1. These “bumps” are the kernel functionsK ,
with

∫

RnY
K
(

Ȳ, Ȳ(i), h
)

dȲ = 1. Note that here only the equations for the one-
dimensional case are given. The extension towards higher dimensions is straight-
forward and can be found in [19]. In this work, a Gaussian kernel is given by

K
(

Ȳ, Ȳ(i)
tk , h
)

=
1
√

2πh
exp



















−1
2















Ȳ− Ȳ(i)
tk

h















2


















, (5)

with standard deviationh. In this context,h is also called smoothing parameter in
the literature.
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Figure 1: Gaussian kernel density estimate (—) ofp(Ȳ, t) for the measured outputs̄Y(i) (•) and the
associated Gaussian kernels (—).

Given the kernelK , an estimator of the probability density for a given sample
Dk is

p(Ȳ, tk) =
1

mk

∑

i∈Ik

K
(

Ȳ, Ȳ(i)
tk , h
)

, (6)

in which mk is the number of cells measured at timetk (the cardinality ofIk).
The selection of the smoothing parameterh is crucial and depends strongly on
mk. In this workh is chosen using the diffusion-based methods presented in [26].
This methods outperform classical selection approaches inthe case of multi modal
densities, which are common in biological processes [10, 14]. As mk is considered
to be large it can be assumed that the error of the estimated output density with
respect to the actual output density is small.

3.2. PDE model of density evolution

As outlined previously, a continuous model for the output density is desirable
for the purpose of parameter identification. Therefore, a PDE model for the cell
population is derived from the IBPM introduced in Section 2.1. Instead of de-
scribing individual cells, we go to the next higher scale andmodel the evolution
of the cell populations directly. This is done without neglecting the dynamics of
the individual cells, resulting in a mechanistic population model.

At first the single cell model is transformed to an extended state space model

dZ(i)
t =



















µ(Z(1,i)
t ,Z

(2,i)
t , t)

0



















dt+



















σ(Z(1,i)
t ,Z

(2,i)
t , t)

0



















dW(i)
t

Y(i)
t = γ(Z

(1,i)
t ,Z

(2,i)
t ),

(7)
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in which the parameters are appended to the state vector,Z(i)
t = [(Z(1,i)

t )T, (Z(2,i)
t )T]T

with Z(1,i)
t = X(i)

t andZ(2,i)
t = P(i). This system can also be written as

dZ(i)
t = µ̃(Z

(i)
t , t)dt+ σ̃(Z(i)

t , t)dW(i)
t

Y(i)
t = γ̃(Z

(i)
t , t),

(8)

in which the initial conditions are drawn from the parameterdistribution,Z(i)
0 ∼ p0(Z).

Based on (8), the PDE model for the population density is derived with state
variable p(Z, t|p0). The density functionp(Z, t|p0) provides the probability of
drawing at random a cell from the population with statesZ(i)

t ∈ Ω at timet,

Pr(Z(i)
t ∈ Ω) =

∫

Ω

p(Z, t|p0)dZ. (9)

The PDE model of the time evolution ofp(Z, t|p0) can be derived directly, as the
state vector of the augmented SDE (8) contains all information about the individ-
ual cell i. Thus, we are in the classical SDE setting. The evolution of the density
of the augmented state vector is described by the Fokker-Planck equation [27, 28],

∂

∂t
p(Z, t|p0) = −

nZ
∑

i=1

∂

∂Zi

[

µ̃i(Z, t)p(Z, t|p0)
]

+
1
2

nZ
∑

i=1

nZ
∑

j=1

∂2

∂Zi∂Zj

[

σ̃i(Z, t)σ̃ j(Z, t)p(Z, t|p0)
]

.

(10)

with initial condition

∀Z ∈ RnZ : p(Z, 0|p0) = p0(Z). (11)

The Fokker-Planck equation (10) is quasilinear and its solution exists for suffi-
ciently smooth ˜µ(·), σ̃(·), and smooth initial conditionsp0(Z) [29].

Employing the state densityp(Z, t|p0), the output densityp(Y, t|p0) is com-
puted via marginalization,

p(Y, t|p0) =
∫

RnZ

p(Y|Z, t)p(Z, t|p0)dZ. (12)

As the measurements are noise corrupted, the density of the measured outputs
p(Ȳ, t|p0) is obtained from the actual output densityp(Y, t|p0) by convolution with
the noise model:

p(Ȳ, t|p0) =
∫

RnY

p(Ȳ|Y)p(Y, t|p0)dY. (13)

8



3.3. Numerical solution of PDE

In order to study the time evolution of the output densityp(Y, t|p0) and the
measured output densityp(Ȳ, t|p0), system (10) has to be solved for givenp0(Z).
As p(Z, t|p0) is defined on thenZ-dimensional space, standard grid-based solvers
are not able to solve system (10) fornZ = nX + nP > 3. Theoretically, the methods
of characteristics can be used [29, 30] but for the high-dimensional system we are
going to study, also this method is difficult to apply as it requires 1) gridding and
2) the calculation of high-dimensional integrals to determine the output density.
Instead, a stochastic method is used [16, 17, 18], which is known from particle
filtering [31].

This stochastic method is based on a particle description ofthe model, which
is in our case equivalent to the cell ensemble model (1). To computep(Ȳ, t|p0), at
first a sample{(X(i)

0 ,P
(i))}si=1, is drawn fromp0(Z), wheres is the sample size. For

this sample the single cell model (1) is simulated, resulting in a set of simulated
outputs{Y(i)

t }si=1. The outputY(i)
t is then corrupted by noise according to (4) result-

ing in {Ȳ(i)
t }si=1. Given the sample{Ȳ(i)

t }si=1 a numerical approximation ofp(Ȳ, t|p0)
can be determined using the kernel density estimator described in Section 3.1.

This numerical stochastic approximation of the densityp(Ȳ, t|p0) can be shown
to converge ass→ ∞ [15]. Thus,p(Ȳ, t|p0) can be approximated also for high-
dimensional nonlinear single-cell models. The advantage of this approach is that
p(Ȳ, t|p0) can be computed without calculating the in general high-dimensional
state densityp(Z, t|p0).

Remark 1. The sample size s required to achieve a good approximation ofthe
state and output density increases with the dimensionalityof the corresponding
densities. Fortunately, in the following only the output density is required which
merely depends on the number of measurands nY used during one experiments.
For typical experimental setups nY is not larger than three or four, rendering the
problem tractable.

4. Parameter estimation

As mentioned in Section 2 the problem studied in this work is the estima-
tion of the initial condition and parameter densityp0 and its uncertainty. These
problems are approached in the following by employing the density-based model-
ing approach derived in Section 3 in combination with parameterization, convex
optimization, and parametric bootstrapping.
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4.1. Estimation of parameter density

In this paper, we approach the problem of estimatingp0 fromDk by minimiz-
ing thel2-norm of the model-data mismatch,

J(p̂0) :=
N
∑

k=1

∣

∣

∣

∣

∣

∣p(Ȳ, tk) − p(Ȳ, tk|p̂0)
∣

∣

∣

∣

∣

∣

2

2
, (14)

where p(Ȳ, tk) is the density of the measured noisy output andp(Ȳ, t|p̂0) is the
predicted density of the measured noisy output obtained by simulation with the
parameter density estimate ˆp0(Z). Note that the objective functionalJ(p̂0) pe-
nalizes the difference between data densityp(Ȳ, tk) and predicted noise corrupted
output densityp(Ȳ, tk|p̂0). This is possible as due to the large number of measured
cells per measurement instance, we have good statistics on the measurement er-
ror. We note that a comparison of the measured output densityp(Ȳ, tk) with the
noise-free output densityp(Y, tk|p̂0) yields in general worse estimation results for
p̂0(Z) than the comparison of the measured output densityp(Ȳ, tk) with predicted
noise-corrupted output densityp(Ȳ, tk|p̂0). This is particularly the case for datasets
Dk obtained with high measurement noise levels.

Remark 2. Different methods are available to compare population models tocy-
tometry data. In particular norm distances [32, 17] or likelihood functions [16,
18] are commonly used. In this work a l2-norm distance has been chosen, as the
evaluation of this objective function is computationally cheap. If the number of
measured cells is small, likelihood functions may be superior.

According to the objective functionalJ, the optimal parameter densityp∗0(Z)
is the solution of

minimize
p̂0

J(p̂0)

subject to
∫

RnZ

p̂0(Z)dZ = 1

∀ξ ∈ RnZ : p̂0(Z) ≥ 0,

(15)

in which the two constraints enforce that ˆp0(Z) is a probability density. Un-
fortunately, the optimization problem (15) is infinite dimensional. Therefore, a
parametrization of ˆp0,

p̂0,ϕ(Z) =
nϕ
∑

j=1

ϕ jΛ
j(Z), (16)
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with a weighting vectorϕ ∈ Rnϕ is introduced. The ansatz functionsΛ j are prob-
ability densities,Λ j(Z) ≥ 0 and

∫

RnZ
Λ j(Z)dZ = 1. To promote simplicity of the

resulting optimization problem, the ansatz functionsΛ j(Z) for p̂0(Z) are chosen
to be head functions, as depicted in Figure 2. This yields thesimplified, finite-
dimensional optimization problem,

minimize
ϕ

J(p̂0,ϕ)

subject to 1Tϕ = 1, ϕ ≥ 0,
(17)

in which 1 = [1, . . . , 1]T ∈ Rnϕ denotes the volume of thej-th head function.
The optimal solution of (17) is denoted byϕ∗. Note that ansatz functionsΛ j(Z)
other than head functions are possible, e.g. polynomial or Fourier series, but
the constraints ensuring that ˆp0,ϕ(Z) is a probability density are likely to be more
difficult to handle.

To solve the parameterized optimization problem (17) the quasi-linearity of the
density-based population model (10) is employed. As the superposition principle
holds [29] for (10), the outputp(Ȳ, t|p̂0,ϕ) can be written as the weighted sum

p(Ȳ, t|p̂0,ϕ) =
nϕ
∑

j=1

ϕ j p(Ȳ, t|Λ j), (18)

wherep(Ȳ, t|Λi) is the output density obtained from simulation withΛ j(Z) as den-
sity of parameters and initial condition. This allows the reformulation of the ob-
jective function to

J(p̂0,ϕ) =
N
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p(Ȳ, tk) −
nϕ
∑

j=1

ϕ j p(Ȳ, tk|Λ j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

.

Employing this (17) can finally be written as

minimize
ϕ

N
∑

k=1

(Akϕ − bk)
T W (Akϕ − bk)

subject to 1Tϕ = 1, ϕ ≥ 0,

(19)

where the integral|| · ||22 has been approximated, e.g. using the trapezoidal rule.
The column vectorbk contains hereby the valuesp(Ȳ, tk) at the grid points of the
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Figure 2: Illustration of head-type ansatz functionsΛ j(Z).

discretization in the state/parameter space. Equivalently, thej-th column ofAk

contains the values ofp(Ȳ, tk|Λ j) at the grid points. The matrixW is a constant
positive definite weighting matrix, determined by the chosen approximation of
|| · ||22. Given (19) with the optimal weighting vectorϕ∗, the density of parameter
and initial conditions with the smallestl2-norm model-data mismatch is ˆp0,ϕ∗(Z).

Note that (19) is a convex, quadratic problem. Hence, fast convergence to the
global optimum can be ensured.

Remark 3. Although the derived convex optimization problem can be solved ef-
ficiently, high-dimensional parameter spaces still cause problems. The reason is
the growing dimension of the weighting parametersϕ with increasing dimension
number. For high-dimensional systems the ansatz functionshave to be chosen
carefully, or an iterative refinement of the ansatz functions should be applied.
Iterative methods may allow that only regions are high probability density are
resolved in detail.

4.2. Analysis of model uncertainty

Besides the optimal density ˆp0,ϕ∗(Z), the assessment of the reliability of a
model also requires information about the model uncertainties. This is of par-
ticular importance when identifiability cannot be guaranteed. In the following, we
present a bootstrap procedure to evaluate the uncertainty of the estimate ˆp0,ϕ∗(Z).
Bootstrapping is a data-driven or model-driven approach from statistical inference
commonly used to gather alternative versions of the single statistic. This enables
the calculation of confidence intervals and hence the evaluation of identifiability
and uncertainty.

In literature, many different types of bootstrap schemes are available. The
most frequently used are case resampling, residual resampling, and parametric
bootstraps [23, 33]. As in biology, measurement data are often limited, case re-
sampling is not the method of choice. Also residual resampling is difficult to
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apply, as in contrast to other applications distributions instead of individual data
points are compared. Developing a reasonable resampling strategy for distribu-
tions may be difficult. Therefore, we present the application of parametric boot-
strapping for the calculation of confidence intervals for ˆp0,ϕ∗(Z) [23, 33, 34, 35].

The procedure of parametric bootstrapping consists of foursteps, as illustrated
in Figure 3. In a first step, the set of available measurement dataD = {Dk}Nk=1 is
used to determine an estimate ˆp0,ϕ∗(Z). This is the comon estimation step. The ob-
tained estimate ˆp0,ϕ∗(Z) is in a second step used to generater alternative, artificial
realizations of the measurement data

D[1] ,D[2],D[3] , . . . ,D[r ]. (20)

The artificial dataD[ j] =
{

D[ j]
k

}N

k=1
, withD[ j]

k =
{(

Ȳ(i),[ j]
tk , tk

)}

i∈Ik
, are sampled from

the predicted distribution (including noise) and have the same size as the original
data set. Hence,D[ j] are typical measurement data we would obtain be studying
a cell population with the parameter and initial state density p̂0,ϕ∗(Z). In the third
step, for each set of artificial dataD[ j] the estimation is performed and the optimal
densityp̂[ j]

0,ϕ∗(Z) is computed, yielding

p̂[1]
0,ϕ∗ , p̂

[2]
0,ϕ∗ , p̂

[3]
0,ϕ∗ , . . . , p̂

[r ]
0,ϕ∗ . (21)

Given this set of estimated densities a statistical analysis is performed to determine
the confidence intervals. In particular, the confidence intervals [p̂min

0,ϕ∗(Z), p̂max
0,ϕ∗(Z)]

are computed [23], e.g. with 95% or 99% confidence level.
Parametric bootstraps have been shown to provide reliable estimates of the

confidence intervals. In particular, the uncertainty estimates are far more reliable
than those obtained using local methods [35]. Unfortunately, the calculation of
bootstraps is often computationally demanding as the estimation problem has to
be solved many times (r ≫ 1) [34, 35, 36]. This often limits the use of this method
to small systems, and there are only few examples in literature where it has been
applied for the uncertainty analysis of parameters of PDEs [37, 7]. Luckily, due
to the facts that:

• the predicted output densitiesp(Ȳ, tk|Λ j) and hence the matricesAk can be
reused, and that

• a convex formulation for the estimation problem (15) has been found,

redoing the estimation is computationally efficient. Given the dataD[ j] the prob-
lem (19) can be solved in seconds even for large systems. Thisenables the usage
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Figure 3: Illustration of parametric bootstrapping procedure as a tool for model-driven uncertainty
analysis. For a detailed description of the workflow we referto [23, 35].

of bootstrapping for uncertainty analysis of models of heterogeneous cell popula-
tions.

Summing up, in this section we presented a density-based framework of model-
ing and data handling for heterogeneous cell populations. This framework allows
the formulation of the considered parameter estimation problem as a convex pro-
gram. This ensures computational efficiency and allows for an efficient parametric
bootstrapping analysis of the confidence intervals.

5. Application to the caspase cascade

Programmed cell death, also called apoptosis, is an important physiological
process to remove infected, malfunctioning, or no longer needed cells from a mul-
ticellular organism. Pathways to induce apoptosis converge at the caspase activa-
tion cascade [38]. A mathematical model for this network hasbeen proposed by
Eissinget al. [39, 40]. Here, we consider the caspase activation in response to an
external tumor necrosis factor (TNF) stimulus. As known from experimental cy-
totoxicity assays, the cellular response to a TNF stimulus is highly heterogeneous,
with some cells dying and others surviving. To understand the process at the phys-
iological level it is thus crucial to consider the cellular heterogeneity induced by
intrinsic and extrinsic noise, using for example cell population modeling.

The core properties of the TNF-induced proapoptotic signaltransduction in
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Figure 4: Schematic of the caspase activation cascade. Continuous arrows (→) indicate fully
deterministic reactions and regulations while dashed arrows (d) indicate stochastic components.

a single cell, which is depicted in Figure 4, can be describedby the 14 reactions
provided in Table 1. The proapoptocic signaling cascade is induced by active TNF
receptors, TNFR, which proteolytically cleave caspase 8, C8, yielding active cas-
pase 8, C8∗. Subsequently, C8∗ cleaves caspase 3, C3, to active caspase 3, C3∗,
which in turn cleaves C8, completing a positive feedback loop. To avoid apoptosis
initiation for low TNFR concentrations, the caspase 8- and 10-associated RING
protein, CARP, and the inhibitor of apoptosis protein, IAP,bind C8∗ and C3∗,
respectively. Thereby, C8∗ and C3∗ are inactivated. Besides the regulatory inter-
action all chemical species are continuously degraded and C8, C3, CARP, and
IAP are synthesized.

The dynamics of the overall signal transduction pathway aregoverned by the
SDE:

d[C8]t = (−v1 − v3 + v11)dt+ σk11dW1,t

d[C8∗]t = (+v1 + v3 − v4 − v9)dt

d[C3]t = (−v2 + v12)dt+ σk12dW2,t

d[C3∗]t = (+v2 − v5 − v10)dt

d[CARP]t = (−v4 + v13)dt+ σk13dW3,t

d[IAP] t = (−v5 − v6 + v14)dt+ σk14dW4,t

d[C8∗∼CARP]t = (+v4 − v7)dt

d[C3∗∼IAP]t = (+v5 − v8)dt,

(22)

in which squared brackets denote the number of the respective molecule. As
gene expression is a highly stochastic process [1, 41], protein synthesis involves
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a stochastic component withσ = 0.4 andWi,t, i = 1, . . . , 4, being a Wiener pro-
cesses. The remaining reactions are model fully deterministically as the molecule
abundance is high. The presented model is an extension of those presented in [39,
40]. Also, some parameters have been adapted to fit availabledata for non-small
lung cancer cell line NCI-H460.

As the system (22) is stiff, its simulation is challenging. The Euler-Maruyama
scheme and the Milstein scheme, which are the most commonly used SDE solvers,
fail to provide good results for reasonable step-sizes. Therefore, the trapeziodal
rule is employed which outperforms for this system all othersolvers evaluated
in [42]. The time increment is set to four minutes.

Given the single cell model, extrinsic cell-to-cell variability is modeled by a
log-normally distributed production rate of the inhibitorof apoptosis IAP,k14,
and a log-normally distributed amount of active TNF-receptor complexes on the
cell membrane, TNFR. These two quantities were chosen as it is known from
experiments that there is a high cell-to-cell variability which may be caused by
pathways which are not included in the model. Especially theconcentration of
IAP molecules contained in a cell is highly variable, and a variation in IAP pro-
duction is known to affect cell death considerably [43]. Besides parameters also
initial conditions among individual cells are different. The initial condition ofi
cell is drawn from the steady state distribution of the SDE (22) obtained for the
parameter valuek(i)

14 for [TNFR](i) = 0. Due to this dependence of the initial state
on the parameters, no additional degrees of freedom are introduced. Hence, the
model describing the evolution of the population density isa 10-dimensional PDE.

In the remainder of this section, we study the possibility ofestimating the
densityp̂0(k14, [TNFR]) from population data of active caspase 3 obtained byflow
cytometry,

Y(i)
tk = [C3∗](i)

tk . (23)

The measurement noise we considered contains additive component and multi-
plicative components,

Ȳ(i)
tk = ǫ

×Y(i)
tk + ǫ

+, (24)

and is therefore rather realistic [25]. Both components,ǫ+ andǫ×, are log-normally
distributed. Median and standard deviation areµ× = 0 andσ× = 0.05 for ǫ×, and
µ+ = 6.5 andσ+ = 0.25 for ǫ+, respectively.

The statistical model of the measured noisy output density,p(Ȳ, t) is shown
in Figure 5. It is determined using artificial measurement data of 104 cells at the
measurement instancestk, k = 1, . . . , 6. This is a realistic number for standard
cytofluorometric experiments.
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Table 1: List of reactions and parameter values describing proapoptotic signaling. The molecule abundance is measuredin molecules per
cell, mo

cell, and the time unit is minute, min. For further information onreactions and parameter values we refer to [39].

Reactions Reaction rates Parameter values and units

R1 C8+ TNFR ⇄ C8∗ + TNFR v1 = k1[TNFR][C8] k1 = 1.0 · 10−6 cell
min·mo [TNFR] = 2.0 · 10+2 mo

cell

R2 C3+ C8∗ → C3∗ + C8∗ v2 = k2[C3][C8∗] k2 = 4.0 · 10−5 cell
min·mo

R3 C3∗ + C8 → C3∗ + C8∗ v3 = k3[C3∗][C8] k3 = 1.0 · 10−5 cell
min·mo

R4 C8∗ + CARP ⇄ C8∗∼CARP v4 = k4[C8∗][CARP] − k−4[C8∗∼CARP] k4 = 5.0 · 10−4 cell
min·mo k−4 = 2.1 · 10−1 1

min

R5 C3∗ + IAP ⇄ C3∗∼IAP v5 = k5[C3∗][IAP] − k−5[C3∗∼IAP] k5 = 5.0 · 10−4 cell
min·mo k−5 = 2.1 · 10−1 1

min

R6 C3∗ + IAP → C3∗ v6 = k6[C3∗][IAP] k6 = 3.0 · 10−4 cell
min·mo

R7 C8∗∼CARP → ∅ v7 = k7[C8∗∼CARP] k7 = 1.16 · 10−2 1
min

R8 C3∗∼IAP → ∅ v8 = k8[C3∗∼IAP] k8 = 1.73 · 10−2 1
min

R9 C8∗ → ∅ v9 = k9[C8∗] k9 = 5.8 · 10−3 1
min

R10 C3∗ → ∅ v10 = k10[C3∗] k10 = 5.8 · 10−3 1
min

R11 ∅ ⇄ C3 v11 = k11 − k−11[C3] k11 = 8.19 · 10+1 mo
min·cell k−11 = 3.9 · 10−3 1

min

R12 ∅ ⇄ C8 v12 = k12 − k−12[C8] k12 = 5.07 · 10+2 mo
min·cell k−12 = 3.9 · 10−3 1

min

R13 ∅ ⇄ CARP v13 = k13 − k−13[CARP] k13 = 4.0 · 10+1 mo
min·cell k−13 = 1.0 · 10−3 1

min

R14 ∅ ⇄ IAP v14 = k14 − k−14[IAP] k14 = 4.64 · 10+2 mo
min·cell k−14 = 1.16 · 10−2 1

min

1
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Figure 5: Statistical modelp(Ȳ, t) of artificial noise corrupted measurement data of active caspase
3 derived from the 104 measured cells.

Based on these data, the estimation approach presented in Section 4 is used
to obtain an estimate for the parameter density. For this purpose the considered
parameter set is divided using a 12× 12 grid, with logarithmically distributed grid
points. The grid points are used as edge and center points of the ansatz functions
Λ j(k14, [TNFR]) of p̂0,ϕ∗(k14, [TNFR]), resulting in 144 weighting parametersϕ j.
For illustration purposes only the estimation results for the marginalized densities,

p̂0,ϕ∗(k14) =
∫

R+

p̂0,ϕ∗(k14, [TNFR])d[TNFR]

p̂0,ϕ∗([TNFR]) =
∫

R+

p̂0,ϕ∗(k14, [TNFR])dk14,

(25)

are depicted in Figure 6.
It is obvious that the parameter densities estimated from the data approximates

the true parameter density well. Especially if we consider the finite number of de-
grees of freedom, limited time resolution of the data and thepresence of intrinsic
noise, the achieved results are very satisfying. As in applications the true densi-
ties are not known, the uncertainty of this estimate has to bestudied. Therefore,
the above presented approach is used and a parametric bootstrap with r = 103

members has been generated. The resulting 98% confidence intervals estimated
from these bootstraps reveal that the data is sufficient to estimate ˆp0,ϕ∗(k14) and
p̂0,ϕ∗([TNFR]) with reasonably small uncertainties. Note that the confidence in-
terval provides only information about uncertainty of the parametrized density.
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Figure 6: True (—) vs. estimated (−•−) parameter densities, with grid points (•). The 98% confi-
dence interval (�) of the estimated parameter densities is shown as background.

The whole example indicates that even though there is a largemeasurement
error and intrinsic noise on the single cell level, due to good statistics at the popu-
lation level, the actual parameter density can be estimatedaccurately. Hence, the
extrinsic cell-to-cell variability within the cell population can be unraveled. This
is true also for higher noise levels if the number of measuredcells is increased.
Furthermore, this study shows that in principle, measuringone concentration can
give enough information to estimate the density of multipleparameters, if the
output density is sensitive with respect to these parameters.

6. Summary and outlook

Heterogeneity in cell populations is an important issue forresearch in systems
biology. However, so far only few models describing heterogeneous populations
of cells with more than one intracellular state variable have been developed. In this
paper a PDE model describing the time evolution of the state density is derived
for systems with intrinsic and extrinsic noise. We focused hereby in particular on
the distribution of the measured outputs.

In the second part of the paper, the model of the noise corrupted measured
outputs and its particular properties are used to estimate the parameter densities
underlying the heterogeneity. Therefore, a density-basedstatistical model of the
sampled single cell is developed and applied in combinationwith convexl2-norm
optimization. To determine the uncertainty of the estimatea parametric bootstrap-
ping approach has been presented, which again employs the problem structure.
The presented approach is novel as it allows the estimation of the statistics of
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extrinsic noise despite the presence of intrinsic noise using efficient convex opti-
mization techniques. Also, the general idea behind the convex formulation of the
estimation problem is transferable and may be used in related fields.

Finally, we applied the proposed approaches to artificial data of a medium
size bistable system modeling the caspase activation cascade. It could be shown
that the developed estimation approach yields good estimation results in case of
a setup which is realistic in terms of noise and amount of available data. Fur-
thermore, the bootstrapping-based uncertainty analysis approach could be used to
study the information contained in the measurement data about the parameters to
be estimated as well as the parameter uncertainties.

Concerning future research several open questions have been identified. One
key aspect is the extension of the model class towards crosstalk among cells. Re-
garding the method, especially other parameterization approaches for the densities
have to be considered, to reduce the number of required ansatz functions. This is
crucial to enable the analysis and estimation of high-dimensional densities.
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series # 57, Tampere International Center for Signal Processing, 2011, pp.
165–168.

[10] N. Mantzaris, From single-cell genetic architecture to cell population dy-
namics: Quantitatively decomposing the effects of different population het-
erogeneity sources for a genetic network with positive feedback architecture,
Biophys. J. 92 (12) (2007) 4271–4288.

[11] M. Henson, D. Müller, M. Reuss, Cell population modelling of yeast gly-
colytic oscillations, Biochem. J. 368 (2) (2002) 433–446.

[12] B. Munsky, B. Trinh, M. Khammash, Listening to the noise: Random fluc-
tuations reveal gene network parameters, Mol. Syst. Biol. 5(2009) 318.
doi:10.1038/msb.2009.75.

[13] S. Waldherr, J. Hasenauer, F. Allgöwer, Estimation ofbiochemical net-
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