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Abstract— The paper gives new conditions for the occurrence
of a transcritical bifurcation in a non-negative passive system
under non-linear static feedback. In biological systems, this
provides a mechanism for defining activation thresholds in
positive feedback systems. We apply the results to a simple
gene regulation system to compute an activation threshold in
the feedback regulation strength.

I. INTRODUCTION

Passive systems subject to a static non-linear feedback
connection appear in several physical applications and have
therefore been studied extensively in systems theory. Re-
cently, passivity based approaches have also been applied to
the stability and bifurcation analysis of biochemical reaction
networks [1]. In particular, it is well known that if the
feedback non-linearity satisfies a sector condition, the closed
loop system is globally stable irrespective of the specific
form of the feedback function. This property is referred to
as absolute stability in the literature [2].
If the sector condition is violated, the closed loop system

may become unstable. An interesting special case occurs if
the static non-linearity is of the form

Φk(y) = −ky + Φ(y)

where k is an adjustable parameter, and Φ satisfies a sector
condition. This setup was shown to give rise to the Hopf
or the pitchfork bifurcation in the closed loop system under
some additional assumptions [3].
In this paper, we consider specifically systems with non-

negative state variables and non-negative outputs. Then, Φ(y)
may satisfy a sector condition even if its second-order terms
do not vanish. A block-diagram for the considered setup is
shown in Figure 1. It will turn out that this may give rise to
a transcritical bifurcation in the closed loop system. In this
bifurcation, the equilibrium branch at the origin looses global
stability at a critical value k∗, and a second equilibrium
branch emerges that is almost globally stable for values of k
slightly larger than k∗. This case is of particular interest in
biological applications, which typically contain non-negative
state variables, and where symmetries that would provide for
a vanishing second order term in Φ(y) are often not present.
In these applications, the transcritical bifurcation may cor-
respond to some threshold value in the feedback strength k.
Crossing this threshold would correspond to activation of a
particular gene regulation system or biochemical signalling
pathway.
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Fig. 1. Passive system Σ under static non-linear feedback Φk

The paper is structured as follows. In Section II, first the
notation and preliminary results that we need are introduced.
Second, we provide a theorem stating conditions for occur-
rence of a transcritical bifurcation in the prescribed class of
systems. In Section III, we apply our results to a simple
gene regulation system with positive feedback regulation,
where we can thus conclude to a transcritical bifurcation
corresponding to some activation threshold value in the
regulation strength.

A. Notation
We denote by R0+ the non-negative real numbers. The

relation k � k∗ is used to denote a value of k near the value
k∗, i.e. k ∈ (k∗, k] for some k > k∗.

II. CONDITIONS FOR THE TRANSCRITICAL
BIFURCATION

A. Preliminaries
Consider the negative feedback interconnection of a non-

linear, input affine SISO system Σ and a static non-linearity
Φk, as shown in Figure 1. The system Σ has the following
state space description:

Σ :
ẋ = f(x) + g(x)u
y = h(x),

(1)

where x ∈ R
n
0+, u ∈ R and y ∈ R0+. Assume that f(0) = 0,

h(0) = 0, h(x) = O(x) for x → 0 and g(0) �= 0. In the
following, we denote by G(s) the transfer function of the
linearization of Σ at the origin.
The static nonlinearity in the feedback path is given by

Φk(y) = −ky + Φ(y) (2)

where Φ : R0+ → R0+ is a smooth function satisfying

Φ(0) = 0 Φ′′(0) = η > 0
Φ′(0) = 0 Φ(y) > 0, y > 0.

(3)

Since Φ is positive and takes only non-negative arguments,
it can be seen as a sector non-linearity in the sector (0,∞).
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Fig. 2. Feedback interconnection of Σk and Φ

The negative feedback interconnection of Σ and Φk is
equivalent to the negative feedback interconnection of Σk

and the nonlinearity Φ (Figure 2), where Σk is given by

Σk :
ẋ = f(x) + kg(x)h(x) + g(x)v
y = h(x).

(4)

The transfer function of the linearization of Σk at the origin
is denoted by Gk(s). The closed loop system is described
by the state space equation

ẋ = f(x) + kg(x)h(x)− g(x)Φ(h(x)). (5)

We assume that R
n
0+ is positively invariant under (5), i.e.

x(t0) ∈ R
n
0+ implies that x(t) ∈ R

n
0+ for all t ≥ t0. Note

that for the described setup, there is always an equilibrium
point at the origin.
We use the following definition for strong passivity [3],

which is slightly stronger than what is usually used in the
literature.
Definition 1: The system Σ (1) is said to be strongly

passive if there exists a continuously differentiable positive
semidefinite storage function V (x) such that

∀x ∈ R
n
0+, u ∈ R : uy ≥ ∂V

∂x
(f(x) + g(x)u) (6)

and the storage function V (x) satisfies
1) V (x) is positive definite and radially unbounded, i.e.

V (x) →∞ as ‖x‖ → ∞.
2) V (x) is twice continuously differentiable in a neigh-
bourhood of the origin and the Hessian evaluated at
zero, ∂2V

∂x2 (0), is a positive definite matrix.
Before coming to the main result, we provide a Lemma

which will be useful in showing that the second equilibrium
point emerging from the transcritical bifurcation is actually
non-negative. Consider the system

ẋ = F (x), (7)

where x ∈ R
n and F (0) = 0. Assume that the Jacobian ∂F

∂x
has a single eigenvalue at the origin and all other eigenvalues
have negative real parts. The center manifold theorem [4]
asserts that the system possesses a one-dimensional center
manifold locally at the origin. Assume furthermore that there
is a neighbourhood U of the origin such that x(0) ∈ R

n
0+∩U

implies that x(t) → 0 as t →∞.

Lemma 1: If R
n
0+ is positively invariant for the flow

of (7), then the center manifold admits a parametrisation
Mc = {xc ∈ R

n | xc = mc(ξ), ξ ∈ R} such that ξ � 0
corresponds to xc ∈ R

n
0+.

Equivalently, we can say that the center manifold has a
branch that extends into the non-negative orthant from the
origin.

Proof: The proof is by contradiction and is based on the
idea that trajectories of the system with initial condition not
on the stable manifold first converge to the center manifold
before converging to the origin.
By the reduction principle, system (7) is locally topolog-

ically equivalent to the system

ξ̇ = α(ξ)

ζ̇ = −ζ,
(8)

where ξ ∈ R, ζ ∈ R
n−1 and α(ξ) = O(ξ2) [4]. Denote the

corresponding coordinate transformation by x = Ψ(ξ, ζ).
Now assume that the center manifold does not admit a

parametrisation as suggested, i.e. it does not have a branch
that extends into the non-negative orthant. Let U be a suitable
open neighbourhood of the origin. Then define a set

C = Ψ({(ξ, ζ) | ξ �= 0,
‖ζ‖
|ξ|k < ε}) ∩ U

with k ≥ 1 and ε > 0 such that C ∩ R
n
0+ = ∅. Consider a

trajectory of the system with initial condition (ξ0, ζ0) with
ξ0 �= 0 such that x0 = Ψ(ξ0, ζ0) ∈ R

n
0+∩U . By assumption,

limt→∞ ξ(t) = 0 and limt→∞ ζ(t) = 0. We also have ξ(t) �=
0 for all t > 0. Since ζ(t) converges exponentially and ξ(t)
only algebraically, limt→∞

ζ(t)
ξ(t)k = 0 for any k ≥ 1, which

can also be established by using L’Hôpital’s rule. Thus for
any ε > 0 and k ≥ 1 there exists T > 0 such that ‖ζ(T )‖

|ξ(T )|k <

ε, i.e. x(T ) ∈ C. This contradicts the assumption that R
n
0+

is positively invariant.

B. Main result
We are now in a position to state the main result of the

paper. Consider the negative feedback interconnection of the
system Σ (1) and the static nonlinearity Φk (2), where Φk

satisfies the additional properties (3). We make the following
assumptions.
(A1) The system Σ is strongly passive.
(A2) Both Σ and its linearization are detectable.
(A3) The closed loop system (5) is ultimately bounded,

i.e. there exists a compact set Ω and T > 0 such
that x(t) ∈ Ω for all t > T .

Note that Σ being passive implies that it has relative degree
1, and a root locus consideration of Σk shows that the origin
becomes unstable for increasing k. Thus there is a critical
value of k for which we have a pole on the imaginary axis.
Theorem 1: Assume (A1-3) hold. Let k∗ ≥ 0 be the

minimum value for which the transfer function Gk(s) has
a pole on the imaginary axis, and assume that this pole is
unique.
If Σk∗ is strongly passive, the closed loop system (5)

undergoes a transcritial bifurcation at the origin: for k � k∗,
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the origin is unstable and there is a second, almost globally
asymptotically stable equilibrium x02 which is non-negative
and different from 0.

Proof: In [3], a passivity approach for Hopf and
pitchfork bifurcations is stated. Thus the proof of Theorem
1 is similar to a proof which can be found in [3, pp.813-
814] and it consists of a local and a global argument. The
local argument will show the existence of a transcritical
bifurcation at β = k− k∗ = 0. This implies that there exists
a constant β1 > 0 and a neighbourhood U of the origin
x = 0, such that for each β ∈ (0, β1], all solutions x with
initial condition in U either converge to the origin or to the
second stable equilibrium point x02. The global argument
will show that eventually we can apply the local argument
to each solution, i.e. there exists a constant β2 ≤ β1 such
that for each β ∈ (0, β2], all solutions enter the set U in
finite time.
We start proving the global argument. As the feedback

system is ultimately bounded, we know that for each β ∈
(0, β3], all solutions enter an invariant compact set Ω =
Ω(β). As Σk∗ is strongly passive and (zero-state) detectable
the origin is globally asymptotically stable for β = 0. The
robustness of global asymptotic stability at β = 0 implies
semi-global practical asymptotic stability of the solution
x = 0 [5, Theorem 2.25, p.28], which means that we can
find a constant β2 ≤ β3 such that for each β ∈ (0, β2], all
solutions with initial condition in Ω enter the set U in finite
time.
Let us now consider the local argument. At β = 0, i.e.

k = k∗, the system possesses a center manifold which is one-
dimensional as Gk∗(s) has a unique pole on the imaginary
axis. If x(t0) is sufficiently small then the solution x(t) of
(1) converges to the center manifold exponentially fast [4].
In normal form coordinates, the center manifold dynamics
write [6]:

ξ̇ = a2ξ
2 +O(ξ3), ξ ∈ R (9)

As Σk∗ is strongly passive, inequality (6) is satisfied with a
locally quadratic storage function V (x). Thus the restriction
of V to the center manifold is (up to a positive scaling factor)
V = 1

2ξ2 +O(ξ3) and the following inequality is satisfied:

V̇ = a2ξ
3 +O(ξ4)

≤ −yΦ(y) = −ηy3 +O(y4) = −ηy3 +O(ξ4).(10)

Detectability of the linearized system implies observability of
the linearized center manifold dynamics, i.e. V̇ = 0 implies
ξ = 0.
Let the center manifold coordinate ξ be chosen such that

ξ � 0 corresponds to x ∈ R
n
0+ \ {0}. By Lemma 1,

this is possible, because we assume R
n
0+ to be positively

invariant, and strong passivity of Σk∗ guarantees convergence
of trajectories to the origin. Thus from the above inequality
V̇ = a2ξ

3 +O(ξ4) ≤ −ηy3 +O(ξ4) for ξ > 0 we conclude
that a2 < 0.
We therefore obtain a transcritical bifurcation at the origin

for β = 0, where for β > 0 the origin becomes unstable and

a second equilibrium emerges that is non-negative, different
from 0 and asymptotically stable. This can be seen if we
consider an extended system where β is an additional state
variable with β̇ = 0. The dynamics on the center manifold
then write

ξ̇ = a1βξ + a2ξ
2 + ξO(‖(ξ, β)‖2) =: l(ξ, β) (11)

With β = 0 we get equation (9). As the origin is globally
asymptotically stable for β ≤ 0, we have a1 > 0. Thus
for k � k∗, i.e. β � 0, the second equilibrium point is
ξ02(β) = −a1β

a2
+ O(β2) > 0, which can be calculated out

of (11) by using the implicit function theorem and solving
the equation

0 = a1β + a2ξ +O(‖(ξ, β)‖2)
for ξ = ξ(β). Asymptotic stability of the equilibrium point
ξ02(β) follows from the fact that for β � 0, the first order
term of the center manifold dynamics at ξ02 is negative:

∂

∂ξ
l(ξ02, β) = −a1β +O(β2) < 0

Finally, ξ02(β) > 0 implies that x02(β) is non-negative and
different from zero for β � 0.

III. APPLICATION TO A BIOLOGICAL POSITIVE
FEEDBACK SYSTEM

In this section, we consider a gene regulation system,
where the protein acts as a positive regulator for its own
synthesis. It will turn out that the results obtained in the pre-
vious section allow to characterise a transcritical bifurcation
in the system. In this way, we obtain a threshold that the
regulation strength needs to pass in order for the protein to
be present in the system at all.

A. Dynamical model of a gene regulatory feedback loop
We study a simple dynamical model of gene regulation,

where a protein P is produced by action of the mRNA
polymerase MP. The model includes a positive feedback,
because the protein acts as a transcription factor for its own
expression, i.e. the mRNA polymerase needs to bind the
protein to form the complex P-MP in order to induce gene
expression.
The setup that we study here appears quite frequently in

gene regulation systems over a wide variety of biological
systems. An example is the regulation of stress response
in bacteria [7]. Also mammalian cells make extensive use
of positive feedback loops in gene regulation, although
those tend to act via more intermediate steps than we have
assumed here [8]. The same setup has also been used in the
construction of synthetic gene regulation systems [9].
The model is constructed as a biochemical reaction net-

work. It includes the basic processes of transcription, i.e. the
production of an mRNA molecule according to a specific
sequence in the cell’s DNA, and of translation, i.e. the
production of a specific protein according to the mRNA
sequence [10]. Also degradation of both the mRNA molecule
and the protein are included in the model. Transcription of
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1) P-MP → P-MP + mRNA v1 = b[P-MP]
2) mRNA → ∅ v2 = a[mRNA]
3) mRNA → mRNA + P v3 = d[mRNA]
4) P → ∅ v4 = c[P]
5) MP + P ↔ P-MP v5 = k1

ε
[P][MP] − k2

ε
[P-MP]

TABLE I
BIOCHEMICAL REACTION NETWORK OF AUTOREGULATORY GENE

EXPRESSION WITH POSITIVE FEEDBACK

the mRNA molecule is catalyzed by the complex formed
of protein (acting as transcription factor) and the mRNA
polymerase. The formation of this complex is accounted
for by an additional reaction in the model. We make the
reasonable assumption that the formation of this complex is
fast compared to transcription and translation. The reactions
in the model and the corresponding reaction rates are given in
Table I, where a, b, c, d, k1, k2 and ε are positive parameters.
ε is small and is used to describe the time scale differences
between the formation of the protein/mRNA polymerase
complex and the other processes.
Introducing the state variables x1 = [mRNA], x2 = [P]

and z = [P-MP] and considering the conservation relation
[MP]+[P-MP] = m yields the following differential equation
model for the considered biochemical reaction network:

ẋ1 = −ax1 + bz

ẋ2 = dx1 − cx2 − k1

ε
x2(m− z) +

k2

ε
z

ż =
k1

ε
x2(m− z)− k2

ε
z

with x1, x2, z ≥ 0.
In the following, we want to simplify this differential

equation model by using singular perturbation [2]. Therefore,
in order to get a right hand side of the differential equation
for x2 which is continuously differentiable in ε, we transform
the state variables by setting x2 = x2 + z = [P] + [P-MP].
Biochemically, this represents the total amount of protein P
in the system, both free protein and protein bound to the
mRNA polymerase. The transformed model writes

ẋ1 = −ax1 + bz (12)
ẋ2 = dx1 − cx2 + cz (13)
εż = k1(x2 − z)(m− z)− k2z (14)

with x1, x2, z ≥ 0.
The singular perturbation corresponds to letting ε tend to

zero. From (14), we get the equation

k1(x2 − z)(m− z)− k2z = 0, (15)

which we solve for x2 to obtain

z = h(x2) =
1
2
(x2 + m +

k2

k1
)

−
√

1
4
(x2 + m +

k2

k1
)2 −mx2.

(16)

Note that h(x2) is real for all x2 ≥ 0.

Substituting (16) into the slow subsystem, i.e. the first two
equations of the original model, we obtain

ẋ1 = −ax1 + bh(x2) (17)
ẋ2 = dx1 − cx2 + ch(x2). (18)

B. The transcritical bifurcation in the gene regulatory feed-
back loop

In this section, we apply the theory developed in Section II
to the gene regulatory feedback loop modelled by (17)
- (18). It will turn out that the linear feedback gain as
described by the parameter k in the theoretical setup is a
function of the parameters m, k1 and k2 in the model. These
parameters represent the amount of mRNA polymerase and
its interactions with the protein, respectively, and as such the
feedback gain can also be interpreted as regulation strength
from a biochemical perspective. Moreover, we will show that
the gene expression process as modelled by reactions 1–4 in
Table I is passive, if a certain condition on the parameters a,
b, c and d is satisfied. Thus the theory developed in Section II
allows us to characterise a transcritical bifurcation in the
autoregulatory feedback loop.
In a first step, we rewrite the reduced model (17) - (18)

into

Σ :
ẋ =

[ −a 0
d −c

]
x +

[
b
c

]
u

y = x2

u = h(y) (19)

where x1, x2, y ≥ 0. In the perturbed system, h(x2) repre-
sents the non-linearity in the feedback path as introduced in
Section II by the relation

h(y) = −Φk(y). (20)

Clearly, h(0) = 0, as required by (3). Next, we compute the
parameter k for the linear part and check that the second
derivative is positive. Indeed, we get

k =
∂h

∂x2
(0) =

m

m + k2
k1

> 0

η = −∂2h(0)
∂x2

2

= 2m
k2

k1

1
(m + k2

k1
)3

> 0.

Thus we have Φ(y) = ηy2 + O(y3). In order to satisfy
the properties (3), it remains to show that Φ(y) > 0 for all
y > 0. This can be done by noting that ∂2h(y)

∂y2 < 0 for all
y ≥ 0, and thus we have

−Φk(y) = ky − Φ(y) = h(y) <
∂h

∂y
(0)y = ky

which implies that Φ(y) > 0 for all y > 0.
The transfer function of Σ is given by

G(s) =
cs + ac + bd

(s + a)(s + c)
.
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The system Σk is then given by

Σk :
ẋ =

[ −a bk
d −c(1− k)

]
x +

[
b
c

]
v

y = x2

(21)

and the non-linear feedback by

v = h(y) = −Φ(y). (22)

For the transfer function of Σk we obtain

Gk(s) =
G(s)

1− kG(s)

=
cs + ac + bd

s2 + (a + c− kc)s + (1− k)ac− kbd
.

The critical value k∗ at which Gk(s) has a pole at the origin
is computed by solving 1−kG(0) = 0. We obtain the critical
value

k∗ =
ac

ac + bd
. (23)

In order to show that R
2
0+ is positively invariant under

(17) - (18) it is sufficient to show that x1 = 0 ⇒ ẋ1 ≥ 0
and x2 = 0 ⇒ ẋ2 ≥ 0, i.e. that on the boundaries of R

2
0+,

the vectorfield of the system (17) - (18) doesn’t point away
from R

2
0+ [11]. Out of (17) we obtain that x1 = 0 ⇒ ẋ1 =

bh(x2) ≥ 0 as h(x2) ≥ 0 for all x2 ≥ 0. Similarly, (18)
yields x2 = 0⇒ ẋ2 = dx1 ≥ 0 for all x1 ≥ 0. Thus R

2
0+ is

positively invariant under (17) - (18).
In the following, we will verify that the conditions of

Theorem 1 are satisfied. It can be easily checked, that the
(linear) system Σ is observable. Thus (A2) is satisfied.
As described in [2], for passivity of linear systems it is

sufficient to examine whether their transfer functions are
positive real. It turns out that both G(s) as well as Gk(s)
are positive real if

c2 ≥ ac + bd

and thus both Σ and Σk are strongly passive if this condition
on the parameters is satisfied.
Last, we have to show that condition (A3) is satisfied, i.e.

that the closed loop system (5) is ultimately bounded. This
can be done by taking the radially unbounded Lyapunov
function W (x) = 1

2 (x2
1 + x2

2) and observing that the
derivative of W along the trajectories of the closed loop
system (5) is negative for ‖x‖ large enough.
As all the conditions of Theorem 1 are satisfied, we

conclude that a transcritical bifurcation occurs at k = k∗ =
ac

ac+bd . For k � k∗, the origin becomes unstable and a second
equilibrium emerges that is non-negative, different from
0 and almost globally asymptotically stable. The resulting
stationary protein amounts for different binding affinities k1

k2
are shown in the bifurcation diagram in Figure 3.
The obtained result can be biologically interpreted in the

following way: The feedback gain k is interpreted as the
regulation strength of the autoregulatory loop, and it depends
on the amount of mRNA polymerase m in the cell and on
the binding kinetics k1 and k2 of the protein and the mRNA
polymerase. Below a certain threshold k∗, which depends on
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Fig. 3. Bifurcation diagram of the autoregulatory gene expression system.
Parameter values where chosen as a = 0.7, b = 0.1, c = 1, d = 0.3,
m = 100, k2 = 1 and k1 ∈ [0, 1].

the production and degradation rates c and d of the protein
P, and a and b of the mRNA, the protein P is not present in
the system at all, as the only equilibrium point is the origin.
In order to express the protein, the regulation strength has
to exceed this threshold value, which can be achieved by
either increasing the amount of mRNA polymerase or by
increasing the affinity of mRNA polymerase and the protein.
In fact, transcription usually involves several factors which
in a system as studied here may be used to alter this affinity
[10].

C. Remarks on passivity of gene expression systems
The example studied in the previous section uses a very

simplistic model of cellular gene expression. It is clearly of
interest, though beyond the scope of this paper, to check
whether the results also apply to more complex models
of gene expression. Because the feedback non-linearity we
consider here is quite general, the main question will be
whether the open loop system is passive.
In particular, passivity requires the open loop system to

have a relative degree of one. On first sight, this might seem
quite restrictive for gene expression systems, which usually
involve many intermediate steps from transcription factor
activity to the final protein output. However, if one models
the actual mechanism of the regulation carefully, as we did in
the example model via singular perturbation, one can in fact
expect to obtain a relative degree one system. This can be
understood by considering the typical molecular mechanism
by which feedback is implemented. In order to act on the
molecule that constitutes the input, the “output molecule” has
to bind to the “input molecule”. Since this binding obviously
affects the output directly, and its rate depends on the input,
we see that such a system will typically be of relative degree
one, no matter how many steps might lay in between.

IV. SUMMARY
The paper proves a new result on occurrence of the trans-

critical bifurcation in a feedback interconnection of a passive
system with a static non-linearity. The results are particularly
suited for biochemical systems, which are typically non-
negative and where symmetries that would favor a pitchfork
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bifurcation are not present. The analysis is based on an input–
output consideration in the form of passivity conditions, and
thus does in general not require a detailed state-space model
of the forward path, if passivity can be established by other
means.
The biological interpretation of the proposed mechanism is

that of an activation threshold in the feedback characteristics,
which has to be crossed in order for the system to become
activated in a biological sense.
To make this interpretation clear, we have worked out

an example where the theoretical result is applied to a
simple model of a gene expression system with positive
autoregulation. It was shown that under certain conditions
on the properties of the system, our theorem can be used
to show existence of a threshold value in the regulation
strength which has to be exceeded in order to express the
considered protein. The regulation strength is characterised
from a systems-theoretic perspective as the slope of the
feedback non-linearity, and from a biochemical perspective
as a function of the mRNA polymerase concentration and
the affinity of binding to the protein.
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