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Mesenchymal stem cells can give rise to bone and other tissue cells, but their differentiation still
escapes full control. In this paper we address this issue by mathematical modeling. We present a
model for a genetic switch determining the cell fate of progenitor cells which can differentiate into
osteoblasts �bone cells� or chondrocytes �cartilage cells�. The model consists of two switch mecha-
nisms and reproduces the experimentally observed three stable equilibrium states: a progenitor, an
osteogenic, and a chondrogenic state. Conventionally, the loss of an intermediate �progenitor� state
and the entailed attraction to one of two opposite �differentiated� states is modeled as a result of
changing parameters. In our model in contrast, we achieve this by distributing the differentiation
process to two functional switch parts acting in concert: one triggering differentiation and the other
determining cell fate. Via stability and bifurcation analysis, we investigate the effects of biochemi-
cal stimuli associated with different system inputs. We employ our model to generate differentiation
scenarios on the single cell as well as on the cell population level. The single cell scenarios allow
to reconstruct the switching upon extrinsic signals, whereas the cell population scenarios provide a
framework to identify the impact of intrinsic properties and the limiting factors for successful
differentiation. © 2010 American Institute of Physics. �doi:10.1063/1.3505000�

Stem cells and their ability to give rise to multiple cell
types have become a major topic in systems biology and
mathematical modeling.1–7 This paper presents a math-
ematical model of functional mechanisms guiding the dif-
ferentiation of progenitor cells into bone or cartilage
cells. We introduce a generic model combining two switch
parts: unspecific differentiation stimuli operate on one
part of the switch, enabling the cell system to leave the
progenitor state, whereas lineage-specific stimuli act on
the other part of the switch, determining which of the
differentiated cell types will be adopted. To achieve the
ultimate goal of guiding stem cells toward cell tissue such
as bone transplants, it will be crucial to detect limiting
factors and design optimal stimulus conditions. With our
model, we demonstrate how, e.g., applying the stimulus
components in a certain sequence might improve the dif-
ferentiation success rate.

I. INTRODUCTION

In recent years, understanding cell differentiation has
gained wide interest. Stem cells promise to offer a high po-
tential for medical therapies and tissue engineering due to
their multipotency. Mesenchymal stem cells �MSCs� are a
particular type of stem cells that can be derived from adults
and can give rise to various types of tissue such as bone and
cartilage.8 Therefore, special interest concerns their targeted
application for bone or cartilage transplants. However, scien-
tists are far from a detailed knowledge of the processes gov-
erning cell fate commitment, differentiation, and mainte-
nance of completely differentiated cell types.

Commonly, cell differentiation is viewed as a process of
subsequent decisions; at each decision point, a genetic switch
determines which of the possible cell fates is adopted. This
view has been formulated in a mathematical modeling
framework5 in terms of binary switch modules. During re-
cent years, systems biology and models of cell differentiation
have greatly improved the understanding of certain types of
stem cells such as hematopoietic stem cells.1–4 For other
types such as MSCs, however, the key determinants guiding
differentiation are still poorly known. There is, to our knowl-
edge, only one mathematical model including MSC lineages,
embedded in a more general model of competing lineages.7

In our model instead, we focus on a subset of lineages for
one decision step. This allows us to extend the bifurcation
analysis to separate inputs, and to apply these inputs in vari-
ous orders. Contrary to the modeling of metabolic networks,
which can often benefit from more quantitative knowledge of
biochemical reactions, modeling of gene regulation struggles
with the complexity but yet sparse knowledge of involved
processes. Thus, dynamical models of gene regulation usu-
ally simplify and reduce to a low number of key regulators
and their functional relationships.1–3

A common way to qualitatively model cell differentia-
tion is by the widespread minimal motif of two genes or
transcriptional regulators �TRs� with mutual inhibition.1–3,5,9

Such a genetic switch can have several equilibrium states,
the number depending on its parameters. Cell differentiation
is then described as a transition from one stable equilibrium
point to another, each corresponding to a different cell type.

We pursue an approach consistent with this perception,
but introducing several new aspects. The transition from the
progenitor to a differentiated state is usually generated by
presumed parameter changes in the “core” genetic switcha�Electronic mail: schittler@ist.uni-stuttgart.de.
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itself, without relation to a biological process.1,2,6 In our
model instead, it is achieved by a preceding switch mecha-
nism, in the following called “preswitch,” that in turn influ-
ences the state variables in the “fate switch.” Stimuli acting
on that preswitch part influence the readiness of a cell to
differentiate, defining a preliminary phase before final differ-
entiation. A similar concept was previously suggested and
modeled in the embryonic stem cell system, where a specific
TR determines the differentiation ability of the stem cells.10

Furthermore, in order to achieve irreversibility, previous
models rely on assuming specific biochemical mechanisms
like complex formation or independent processes between
transcription factors,1,2 or they completely neglect activating
factors other than autoactivation.6,7 Although these condi-
tions may be fulfilled in some regulatory circuits, there is no
sufficient knowledge about the biochemical details in MSCs
to build on such specific assumptions. If the hypothesis of
irreversible subsequent cell fate decisions is to hold as the
central concept it is proposed,5 we argue that it has to origi-
nate from a more general design principle than some specific
cooperative or binding reactions. Our model is set up in a
more general way of activating and inhibiting factors all con-
tributing to one functional activity rate, and proposes a pre-
switch mechanism that generates tristability.

Another crucial point is that asymmetries in parameters
between the two mutually inhibiting, unstimulated TRs were
so far only considered by a few studies.2,7 We also study
asymmetry �bias� effects on the level of a single cell as well
as on population level with stochastic fluctuations: despite
the same bias throughout the population, there is not neces-
sarily a homogeneous system behavior in the population.
This, in addition, allows to identify and evaluate factors that
limit the differentiation success rate in experimental settings.

The aim of our model, functionally describing cell dif-
ferentiation, is the following. We ask

�1� whether the hypothesized mechanism can generate a
system behavior as observed in differentiating cell sys-
tems,

�2� to what extent such a minimalistic model can already
provide an explanation of the major characteristics of
differentiation, and

�3� what insights can be achieved by employing this model
for simulations and predictions, such as the differentia-
tion success rate.

This paper is outlined as follows. First, we introduce the
biological background and derive the model in Sec. II. Next,
we analyze the model with respect to stability, state space,
and bifurcation properties in Sec. III. In Sec. IV, we employ
our model for simulations on the single cell level as well as
on the population level. In Sec. V we conclude with a dis-
cussion and some final remarks.

II. MODEL

The biological system under consideration is one of sev-
eral steps in the differentiation of MSCs: osteochondro pro-
genitor cells that originate from MSCs have already under-
gone several steps of specialization, remaining bipotent in

the sense that they still can differentiate into either osteo-
blasts or chondrocytes.11,12

This system provides several working assumptions for
developing a model: there are three cell types to be captured
in terms of stable equilibria, namely, a progenitor �P�, an
osteogenic �O�, and a chondrogenic �C� cell type. Each cell
type is recognized by high levels of a characteristic TR, de-
noted as xP, xO, or xC, respectively, but low levels of the
other TRs. This is schematically depicted in Fig. 1 with the
axes denoting the TR levels.

It is observed in experiments that there occur certain
transitions between the three cell types,8,12 while others do
not. In terms of systems theory, a transition between two cell
types means that the system is pushed out of the attractor
basin of one stable equilibrium and into the attractor basin of
a different stable equilibrium. Let us denote a transition from
cell type i to cell type j, i , j� �P ,O ,C�, by �i→ j�.

Formulating the biological observations about transi-
tions, there should be only two possible transitions of differ-
entiation, namely,

�diff = ��P → O�,�P → C�� . �1�

Other transitions that are not observed in the experimen-
tal settings considered here are dedifferentiation

�de = ��O → P�,�C → P�� �2�

and transdifferentiation

�tra = ��O → C�,�C → O�� . �3�

As depicted in Fig. 1, the MSC thus has three options: to
maintain its progenitor state P or to differentiate into either
osteoblast O or chondrocyte C.

These observations motivate our concept of a model
consisting of two switch parts, each reflecting a different
mechanism in the cell system: a preswitch determines
whether the cell is able to differentiate at all or remains in the
stable progenitor state. Then, the configuration of a fate
switch in turn determines into which cell type the cell will
differentiate. This concept is in accordance with mechanisms
found in the biological system, as will be outlined in the
following.

FIG. 1. �Color online� Cell types ��� and transitions between them �→� in
differentiation of osteochondro progenitors. Each cell type is recognized by
a high level of one of the three TRs �three axes�. The possible transitions
from the progenitor to a differentiated state take place upon the correspond-
ing stimuli.
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We consider a particular example of two mutually inhib-
iting key TRs, which determine the cell fate of osteochondro
progenitor cells. In the following, we will refer to this pair as
the “osteochondro switch” �OC switch�: Osx �also Runx2� is
established as an osteogenic TR �Ref. 13� and Sox9 as a
chondrogenic TR.11 They inhibit each other’s activity via
several mechanisms11,14 and autoregulate their own
activity15–17 as can be found for many TRs.

In addition, we propose a third TR exhibiting a progeni-
tor maintenance role, the preswitch. In our particular ex-
ample, one candidate would be the cytokine Tweak. It is
known to act pro-proliferative, differentiation-inhibiting,18,19

and thus is a potential regulator of cell fate decisions. In
particular, Tweak inhibits osteogenic TRs Runx2, Osx,20 as
well as the chondrogenic TR Sox9.21 There are various pos-
sibilities for autoregulating mechanisms such as autocrine
signaling19 or more extensive signaling loops.

From this collection of qualitative knowledge and re-
quirements, let us now construct a mathematical model. We
do not assume that these processes �autoregulation, inhibi-
tion� are completely independent of each other, but rather
result in an overall activation rate for each component. The
system state is represented by the three state variables
xP ,xO ,xC, corresponding to the three respective levels of the
progenitor TR, the osteogenic and the chondrogenic TR. Re-
lating to experimental data, these would be �as a rough mea-
sure� mRNA levels or �as a more precise measure� transcrip-
tion factor activities from reporter genes.

Stimuli are assumed to enter the system in the following
ways. An unspecific pro-differentiation stimulus will inhibit
the progenitor maintenance factor, whereas stimuli acting in
the pro-osteogenic or pro-chondrogenic direction enhance
the activity level of the lineage-specific TR, respectively. The
structure of the OC switch model and stimulus inputs is de-
picted in Fig. 2. These functional relationships can be sum-
marized in a set of ordinary differential equations as follows:

d

dt
xP =

aPxP
n + bP

mP + zD + cPPxP
n − kPxP, �4�

d

dt
xO =

aOxO
n + bO + zO

mO + cOOxO
n + cOCxC

n + cOPxP
n − kOxO, �5�

d

dt
xC =

aCxC
n + bC + zC

mC + cCCxC
n + cCOxO

n + cCPxP
n − kCxC, �6�

where the coefficient n�2, and for i , j� �P ,O ,C� the state
variables xi are non-negative real numbers, the parameters
are real numbers ai ,bi ,cij ,ki� �0,��, mi� �0,��. Their
meaning and nominal values are given in Table I. The inputs
zi for i� �D ,O ,C� are each zi� �0,zi

max�. Then, zD corre-
sponds to a lineage-unspecific pro-differentiation stimulus,
zO and zC to pro-osteogenic and pro-chondrogenic stimuli,
respectively. The model could be simplified by reducing the
number of parameters, but the paper uses the unreduced
equations as the most general representation. Equations
�4�–�6� will also be referred to as dx /dt= f�x ,z� for brevity.

Since there is no detailed knowledge of underlying bio-
chemical interactions and the model gives a concept of func-
tional relationships, we introduce several simplifying as-
sumptions. The parameters in the fate switch �Eqs. �5� and
�6�� are assigned symmetric values, unless mentioned differ-
ently. That means there is no inherent bias of the cell toward
one or the other lineage, as long as no lineage-specific stimu-
lus is applied. Second, it is assumed that n=2, which is the
lowest Hill coefficient producing a sigmoidal shape of the
activation term. Qualitative results therefore apply equiva-
lently for higher Hill coefficients n�2, arising from more
complex reactions.

Third, it is important to note that each input zD ,zO ,zC is
to be seen as “effective” input z=z��L��, rather than the
amount of actually applied biochemical substance �L� itself.
Without knowing the exact function z��L�� which depends on
further signal processing through pathways, one nevertheless
can investigate TR dynamics if solely known, e.g., that
z��L�� is a monotonically increasing function in �L�.

III. ANALYSIS

The aim of analyzing our model is to test whether the
proposed model is able to reproduce the cell system proper-
ties observed during differentiation. Therefore, we study the
stable equilibrium points �Sec. III A� and the transitions in
the system �Sec. III B�.

FIG. 2. �Color online� The conceptual model for the OC switch. Positive
interactions �activation� are denoted by sharp arrows �→�, negative interac-
tions �inhibition� are denoted by stump arrows �� �. Abbreviations: xP: pro-
genitor maintenance factor, xO: osteogenic TR, xC: chondrogenic TR, zD:
pro-differentiation stimulus, zO: osteogenic stimulus, zC: chondrogenic
stimulus.

TABLE I. Parameter set used for bifurcation analyses and simulations. The
parameters are without units.

Parameter Meaning Value

n Hill coefficient 2
aP Autoactivation of xP 0.2
bP Basal activity of xP 0.5
mP Inflection point for xP 10
cPP Self-inhibition strength of xP 0.1
kP Decay rate of xP 0.1
aO, aC Autoactivation of xO, xC 0.1
bO, bC Basal activity of xO, xC 1
mO, mC Inflection point for xO, xC 1
cOO, cCC Self-inhibition strength of xO, xC 0.1
cOC, cCO Mutual inhibition strength of xO, xC 0.1
cOP, cCP Inhibition strength of xP on xO, xC 0.5
kO, kC Decay rates of xO, xC 0.1
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A. Stability properties

The cell types of the system are reflected by stable equi-
librium points of Eqs. �4�–�6�, i.e., solutions x�= �xP

� ,xO
� ,xC

� �T

of

f�x�,z� = 0 �7�

with the Jacobian Df�x� ,z� having eigenvalues �k with
Re��k��0∀k, with f�x ,z� the right-hand side of Eqs.
�4�–�6�.

As pointed out in Sec. II, biological observations claim
the existence of three cell types in the unstimulated case
z=0, associated with the osteochondro progenitor �recall
Fig. 1�: the progenitor P �corresponding to the equilibrium
state x�P��, the osteogenic cell type O �equilibrium state x�O��,
and the chondrogenic cell type C �equilibrium state x�C��.
Each equilibrium state x�i�, hence cell type i� �P ,O ,C�, is
characterized by

xi
�i� � xi

�j� ∀ j � i, i, j � �P,O,C� , �8�

whereas xi
�j� denotes the TR level xi in the equilibrium state j.

The three cell types are mutually exclusive and are the
only ones that should be reflected by our model. Therefore,
we claim the existence of exactly three stable solutions to
Eq. �7�.

The model indeed is able to generate exactly three stable
equilibrium points. Figure 3�a� illustrates the three-
dimensional state space for an exemplary parameter set as in
Table I. Comparing Fig. 3�a� against Fig. 1, one perceives the
correct location of stable equilibrium points. As required
from biology, the three stable equilibria represent the states
P, O, and C, and each satisfies Eq. �8�.

Furthermore, each equilibrium point x�i� lies within its
attractor basin

	i ª �x̃�lim
t→�

x�t, x̃� = x�i�� , �9�

whereas x�t , x̃� is the solution of Eqs. �4�–�6� for x�0�= x̃.
The extent of an attractor basin, bordered by separa-

trices, thereby has an actual meaning in terms of qualitative
system properties as well as the biological context: how
close the separatrix is to an equilibrium state is one determi-
nant of how robust the system is to fluctuations, e.g., in
mRNA production of the respective TR, and to perturbations,
e.g., by stimuli. A stimulus input can cause an equilibrium
state to vanish and thus induce a transition to another equi-
librium. This will be the focus of Sec. III B.

B. Bifurcation properties

Besides the existence of stable equilibrium points, of
same interest and importance are the transitions between
them �cf. Fig. 1, Sec. II�. The differentiation transitions �diff

�Eq. �1�� should be achievable by transient system inputs,
which correspond to stimuli in the biological language. Our
model considers three inputs zD, zO, and zC acting on the
state variables, as given in Eqs. �4�–�6�. Due to symmetrical
properties between Eqs. �5� and �6�, it is sufficient to inves-
tigate only zO. Equivalent conclusions will then hold for zC.

The model should allow for the transitions �diff, but nei-
ther �tra nor �de �Eqs. �1�–�3��. Bifurcation analysis �done
via CL_MATCONT �Ref. 22�� reveals that, e.g., for the param-
eter set given in Table I, the model allows exactly the re-
quired transitions �diff, while excluding �tra and �de as de-
manded: the inputs zD and zO affect the attractor basins 	i

and can shift the system from a tristable to a bistable regime,
as illustrated in Fig. 4. In this case, coming from the state
that is lost upon the input signal, the system will converge to
one of the two remaining states. The input zD decreases 	P

�Fig. 3�b�� and can switch off the preswitch mechanism for
zD�zD

crit, forcing the system to leave the P state and trigger-
ing a differentiation transition �diff.
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FIG. 3. �Color online� State space, equilibrium points, and exemplary tra-
jectories for �a� zD=zO=0, �b� zD=0.5, and �c� zO=0.5. The three stable
equilibrium points are marked with circles and the corresponding cell type
P ,O ,C. The trajectories visualize the basins of attraction 	i. �b� zD de-
creases 	P and increases 	O and 	C equally. �c� zO increases 	O and
decreases 	C without altering 	P. Parameters are as in Table I.
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FIG. 4. Bifurcation diagrams for xO: �a� vs the input zD and �b� vs the input
zO. Stable equilibrium manifolds are given as solid lines, unstable equilib-
rium manifolds as dashed lines. The gray solid line corresponds to the P
state where xP is high and thus suppresses xO generally. The black solid lines
correspond to the differentiated states O, C. Parameters are as in Table I. �a�
For a sufficiently high input zD�zD

crit, the system is shifted from a tristable to
a bistable regime �	P vanishes� and will either converge to the O or the C
stable equilibrium point. After removing the input zD, the differentiated state
is maintained irreversibly. �b� The input zO can be viewed as acting in a
dimension orthogonal to zD �cf. �a��. Applying zO will increase 	O, until for
zO�zO

crit loosing the C state �	C vanishes�, which would correspond to
transdifferentiation. After removing the input zO, the state O is maintained
irreversibly.
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In contrary, the input zO cannot cause the P state to
vanish and thus cannot induce differentiation ��diff� by itself.
Instead, zO enlarges 	O �Fig. 3�c��. As can be seen in
Fig. 4�b�, for a high zO�zO

crit the system could switch from
state C to state O, which would mean a transdifferentiation
�tra. Since this behavior is not observed in the considered
cell system, the model might give the hint that the effective
input zO, as applied in the experiment, is limited to a
zO

max�zO
crit. Equivalent results hold for zC.

In realistic parameter sets, there is not necessarily sym-
metry in parameters between the two lineage-determining
TRs xO and xC, as we assumed up to this point. This is not
only an aspect to be considered, but actually raises more
comprehensive investigations on the effects of heterogeneity
in parameters. We will show an example scenario in
Sec. IV A and consider the asymmetric parameters in a cell
population framework in Sec. IV B.

To sum up our results from stability and bifurcation
analysis, we have shown that the model we propose is able to
capture the fundamental properties of the differentiation pro-
cess. This means that it can reproduce the observed number
of stable equilibrium states as well as the transitions between
them.

These system properties not only hold for the exemplary
parameter set in Table I, but for a certain range of param-
eters. For Eq. �4�, this is shown analytically in the Appendix.
For Eqs. �5� and �6�, this was done via extensive bifurcation
analysis on the model parameters �not shown here�.

IV. DIFFERENTIATION SCENARIOS

After a general analysis from a theoretic viewpoint in
Sec. III, in this section we demonstrate how our model can
also serve for more descriptive applications to the biological
problem. Based on our model, we present two kinds of simu-
lations. First, modeling the behavior of a single cell in Sec.
IV A serves to investigate the effects of deterministic or ex-
trinsic signals, usually applied on purpose in the form of
biochemical stimuli. Second, simulations on a cell popula-
tion level as in Sec. IV B enable a better understanding of
intrinsic signals given by heterogeneous or stochastic intra-
cellular properties.

A. Single cell switching

We now demonstrate that our model can reproduce the
differentiation process upon extrinsic signals on a single cell
scale. In particular, we study stimuli zi , i� �D ,O ,C� or com-
binations of these, potent to induce an osteogenic differen-
tiation transition �P→O���diff. For simplicity and since the
exact functions zi��L�� are unknown, we consider only step
function inputs

zi�t� = 	Zi for ti
�1� 
 t 
 ti

�2�

0 otherwise.

 �10�

In order to achieve osteogenic differentiation �P→O�,
we know from Sec. III B that two goals have to be pursued:

�1� The system has to escape the attractor basin of P.
�2� The system has to enter the attractor basin of O.

Since zC does not assist in achieving any of these two
goals, we consider combinations of zD and zO for the follow-
ing stimulus scenarios:

�a� zD, zO are applied concomitantly: tD
�1�= tO

�1�=100.
�b� zD is applied first, then zO: tD

�1�=100, tO
�1�=500.

�c� zO is applied first, then zD: tD
�1�=500, tO

�1�=100.

In order to investigate the effect of asymmetries in pa-
rameters �meaning an intrinsic bias toward one of the two
lineages�, we furthermore consider the following scenario:

�d� zD is applied first, then zO: tD
�1�=100, tO

�1�=500; but now
with bO=0.9�bC=1, which means a slight intrinsic
bias toward chondrogenic lineage; remaining param-
eters as in Table I.

For all scenarios, we set ZD=0.8�zD
crit ,ZO=1�zO

crit,
tD
�2�= tO

�2�=800 always, parameters as in Table I.
The outcomes of scenarios �a�–�d� are depicted in Fig. 5.

The observations will be discussed in the following.
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FIG. 5. �Color online� Dynamics of stimulus scenarios �a�–�d� �cf. text�. TR
dynamics of xP �black dot-dot-dashed line�, xO �blue solid line�, and xC

�green dashed line�. Stimulus inputs zD �red thin dashed line�, zO �cyan thin
solid line�.
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In scenario �a�, the concomitant application of zD and zO

induces escape from the P state and attraction to the O state
�Fig. 5�a��. This is also what one expects from systems
analysis �Sec. III�.

In scenario �b�, first zD causes xP to decrease, thus both
xO and xC increase to an equal value �Fig. 5�b��; not until zO

is added, xO fully increases and xC again decreases to a low
value, corresponding to state O. This can be understood by
recalling the system properties: when only first zD is applied,
it temporarily shifts the system from a tristable to a bistable
regime �cf. Fig. 4�a��, causing the system to escape the P
state. Since this scenario assumes symmetry of parameters in
Eqs. �5� and �6�, and in initial values of xO and xC as well,
the system state will preliminary remain at a point on the
separatrix between the two differentiated stable states �cf.
Fig. 3�. Then, adding zO pushes the system finally into the O
attractor basin 	O.

It is of course important to note that any asymmetries in
parameters, initial values, or stochastic fluctuations could
cause a deviation from the unstable state and thus attraction
to O or C state, depending on the particular deviation. As a
consequence, the eventual system fate completely eludes
controlled guidance. In order to avoid this case, a reasonable
guideline would be to never apply a stimulus zD alone before
the additional application of the lineage-specific stimulus zO.

In scenario �c�, the two stimuli are applied in the oppo-
site order, thus avoiding the problem just discussed. As seen
in Fig. 5�c�, first applying zO slightly increases xO, but cannot
cause the P state to vanish �cf. Fig. 4�b��. In terms of Fig. 3,
this means that the P state is shifted slightly toward O, but
the system is still trapped in 	P. Not until zD is added, the
tristable regime is left to bistability, where due to the effect
of zO the system enters 	O. In this scenario, the differentia-
tion process is completely under control. �We will see in Sec.
IV B that further limitations on this control might be im-
posed when considering stochastic effects.�

The so far presumed symmetric parameters are a special
case, but are not the case in general. In scenario �d�, the
value of bO �the basal activity of the osteogenic TR� is not
set equally to bC �the basal activity of the chondrogenic TR�,
but to a smaller value: bO=0.9=0.9bC. As seen in Fig. 5�d�,
upon applying zD and loosing the P state, the system falls
into 	C and thus xC increases to xC�xO. The application of
zO cannot reattract the system to 	O any more: the system is
already trapped too deeply in 	C and, since in the scenario
zO is limited to zO

max�zO
crit, there exists a certain time point

�t
 tO
�1�=500 here� from which on the input zO is not suffi-

cient any more for the system to escape 	C. This again con-
firms that asymmetries in parameters can play a crucial role,
especially if an unspecific stimulus zD is to exhibit its effect
before the lineage-specific stimulus zO, as in scenario �b�.

To sum up the observed dynamics in the simulation sce-
narios, we can restrict stimulus combinations for successful
osteogenic differentiation by the following requirements:

�1� There has to be a sufficiently large zD�zD
crit �cf. Fig.

4�a�� in order to leave 	P.
�2� As soon as the attractor basin of P is left, and any de-

viation from the separatrix occurs, e.g., due to initial

state values asymmetric between xO and xC, the system
will converge to O or C. There has to be an osteogenic
stimulus zO in order to safely guide the system to 	O.

�3� Asymmetries in parameters or initial values may impose
a bias toward one or the other lineage; in case of a bias
toward C, zO has to be sufficiently large in order to
overcome this bias and instead guide the system into
	O.

�4� The inputs have to be present long enough and at the
crucial time points: zD has to act sufficiently long for xP

to leave 	P in order to achieve irreversible escape. zO

has to act sufficiently long to drive the system into 	O.

As seen, not only the combination and amount of stimuli are
crucial, but also the sequence of what times they become
effective.

None of the two inputs zD, zO alone is sufficient to ex-
ecute a transition guided toward one specific cell type O or
C. So in order to steer the system on purpose toward the
desired �say, osteogenic O� state, a combination of both in-
puts is necessary. Biologically, combining the two inputs in
any desirable way requires that zD, zO could be achieved by
biochemically distinct substances and pathways. Indeed,
classical osteogenic differentiation medium consists of sev-
eral biochemical substances �e.g., dexamethasone, ascorbic
acid, and �-glycerophosphate23� with probably different ana-
log to zD or zO. Our model can serve to apply hypothetical
stimulus combinations and sequences and compare the re-
sulting outcomes.

B. Cell population effects

The differentiation scenarios examined so far were all
based on a deterministic single cell model, such that the sys-
tem response to some input signal was precisely as predicted
by the bifurcation analysis. But, as already indicated in Sec.
III B, under realistic circumstances the states are subject to
stochastic fluctuations.24 This section will examine these in-
trinsic signals: they escape the control via experimental ma-
nipulations, contrary to the extrinsic signals covered in Sec.
IV A, and thus can impose limitations on the differentiation
success rate.

To account for stochastic fluctuations during the tran-
scription process,25 i.e., on the activation rates, the model
equations are extended to a set of stochastic differential
equations26,27 with independent white noise Wi, i� �P ,O ,C�,

dxP = − kPxPdt +
aPxP

n + bP

mP + zD + cPPxP
n �dt + �dWP� , �11�

dxO = − kOxOdt +
aOxO

n + bO + zO

mO + cOOxO
n + cOCxC

n + cOPxP
n �dt + �dWO� ,

�12�

045121-6 Schittler et al. Chaos 20, 045121 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



dxC = − kCxCdt +
aCxC

n + bC + zC

mC + cCCxC
n + cCOxO

n + cCPxP
n �dt + �dWC� ,

�13�

with � the standard deviation, which was solved via a Euler–
Maruyama scheme.28

As in Eq. �10�, stimuli are applied as step function in-
puts, again tD

�2�= tO
�2�=800. For noise �=0.4 is chosen such

that the state variables xi experience a coefficient of variation
of about 0.07, which is a level of noise that is found reason-
able in similar systems.25

We then investigate the effect of different levels of ZD

and ZO on the percentage of cells that are finally in state P,
O, or C,

Perc�i� ª 100% · Probability�x � 	i�, i � �P,O,C� . �14�

The probability was approximated by using N simulations of
x as in Eqs. �11�–�13�.

To investigate how capable a lineage-specific stimulus
zO is to guide the system toward O, a strong inherent bias
toward the competing state C was created by setting
bO=0.5�bC=1, all other parameters as in Table I.
Simulations were done for a population of N=1000 cells for
t� �0,1000�. Stimuli were applied zD�t�=ZD for
t� �tD

�1� , tD
�2��= �100,800� and zD�t�=0 otherwise, zO�t�=ZO

for t� �tO
�1� , tO

�2��= �400,800� and zO�t�=0 otherwise. The per-
centages Perc�i� were determined by how many trajectories
remained in 	i under deterministic conditions.

In Fig. 6 it can be seen that the percentages of cells
depend on the amounts of stimuli ZD and ZO in a highly
nonlinear way. Perc�P� is only determined by ZD, as ex-
pected. It is almost 100% below some threshold for ZD,
meaning that the stochasticity is not sufficient to induce dif-
ferentiation on its own, and minimal 0 above another thresh-
old, although this threshold still fulfills ZD�zD

crit, i.e., sto-
chasticity is sufficient to push each cell over the limit point
zD

crit at some time instance t� �100,800�.
Perc�O� has its maximum for intermediate ZD and high

ZO, but decreases again for high ZD. This happens because if
zD�t� is high, many cells leave 	P before zO�t�=ZO becomes
effective, therefore having a bias to 	C �due to the parameter
bO=0.5�bC=1�.

Perc�C� has the maximum value of 100% for high ZD,
but low ZO; besides, it has two peaks for low and high ZD

regardless of ZO. The first peak for low ZD occurs because
for a low zD�t�, also zO�t� cannot exhibit its full effect: the
differentiation process is mainly initiated by stochastic fluc-
tuations rather than the deterministic parameters. The second
peak for high ZD originates from the same effect responsible
for the decrease of Perc�O� for high ZD, namely, because
many cells leave 	P and enter 	C before ZO gets effective.

After comparing the amounts of stimuli, we also consid-
ered the effect of their timing. Regarding the duration
�tD

�2�− tD
�1�� where zD�t�=ZD, it was observed that increasing

�tD
�2�− tD

�1�� has qualitatively the same effect as increasing ZD

�proven by equivalent analysis�. For the osteogenic stimulus
zO, the dependency is less obvious: an input zO�t�=ZO en-
larges 	O, but does not alter 	P �cf. Sec. III B�. Thus, it
cannot exhibit its effect as long as zD�t�=0. Therefore, we
investigated the change of percentages Perc�i� upon
�tO

�1�− tD
�1��, i.e., the delay between effective inputs ZD and ZO.

Figure 7 depicts the results exemplarily for ZD=0.4,
ZO=0.55, remaining values as before. Clearly, the timing of
zO after zD plays a crucial role for the differentiation success
rate, in this case measured in the percentage of osteogenic
cells Perc�O�.

Summing up, our model demonstrates that stochasticity
on the one hand can induce differentiation although zD is
below the �deterministic� threshold zD

crit, but on the other
hand can also limit the differentiation success rate. The stud-
ies here indicate that a limited differentiation success rate
may be due to a pro-differentiation stimulus zD that lies be-
low the threshold for differentiation under deterministic cir-
cumstances.

V. DISCUSSION

We have developed a model of cell differentiation, in
particular, of the osteochondro progenitor cell, based on in-

FIG. 6. �Color online� Perc�P�, Perc�O�, and Perc�C� after stimuli were applied with zD�t�=ZD for t� �100,800�, zO�t�=ZO for t� �400,800� �cf. text for
details�. Perc�P� is only determined by ZD. Perc�O� has its maximum for intermediate ZD and high ZO, decreasing again for high ZD. Perc�C� has its maximum
for high ZD, but low ZO; also, it peaks for intermediate and high ZD regardless of ZO.
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FIG. 7. Perc�P�, Perc�O�, and Perc�C� vs delay �tO
�1�− tD

�1�� of stimulus zO �cf.
text for details�. There is a clear dependency of Perc�O� and Perc�C� �but
not of Perc�P�� on how late zO is applied.
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teractions between key TRs. As we have shown, the model is
able to reproduce the biological observations: the existence
of three stable equilibrium states �cell types�, and the two
transitions when the cell leaves the progenitor state and
adopts osteogenic �bone� or chondrogenic �cartilage� lineage.

Our model proceeds in the established manner of mini-
mal gene regulatory network models.1,2 The particular ex-
ample of such a genetic switch considered here comprises
the well-known motif of two mutually inhibiting TRs. But it
differs from previous models of bistable switches where loss
of the progenitor state was achieved by changing parameters,
and based on specific assumptions on cooperativity, complex
formations, or independency of processes. The model pre-
sented in this work instead contains an additional TR that is
responsible for maintaining the progenitor state as indicated
by experimental observations, incorporating a concept simi-
larly reported in the embryonic stem cell system.10 This work
shows that models for cell fate switches need to have three
stable equilibrium states, and that this can be achieved reli-
ably via a generic model of two separated decisions: trigger-
ing differentiation by a preswitch and fate determination by a
fate switch.

In this way, the model suits the framework of binary cell
fate decisions executed by subsequent switch modules:5 the
process in the preswitch can be seen as the result of a genetic
switching at an earlier step, which in turn may again be one
of mutually inhibiting TRs. Alternatively, our model may
serve as a module to be incorporated within a set of nonhi-
erarchical cell fate decisions.6,7 With one such module pro-
vided by our model, it will be the task for future work to
implement and interconnect to further modules, such as for
the cell fate decision between adipogenic and osteochondro
progenitor lineages. Such modeling frameworks, and their
comparison, have the potential to contribute to a comprehen-
sive understanding of MSC differentiation down to fully ma-
tured bone, cartilage, fat cells, and other cell types.

Our main message is that the proposed mechanism, al-
though based on very coarse and qualitative knowledge
about functional relations, can give an explanation on how
differentiation might function. What is more, it can also un-
ravel how differentiation might �or might not� be guided into
a specific direction. For this purpose, we analyzed the multi-
input response to stimuli applied in various combinations
and sequences. Bifurcation analysis and simulations on
single cell scale reveal that not only the amount of stimuli
but also their combination and timing may play a crucial role
for the eventually adopted cell fate. To obtain more detailed,
quantitative predictions about stimulus effects, additional
modeling of the pathways from applied substances to effec-
tive inputs on TRs is required.

Furthermore, we extended our model to the level of cell
populations with stochastic single cell dynamics to study the
effect of stochasticity, stimulus amounts, combinations, and
sequences on the differentiation outcome. We were able to
show that stochastic effects might induce differentiation
events already below the �deterministic� threshold and limit
the differentiation success rate. The proposed model can
serve to indicate potential factors, such as stimulus timing, to
suggest experimental protocols and improve the differentia-

tion success rate. Due to its coarse and functional character,
it is especially suited for such fundamental investigations.
Our model may provide an explanation why MSC differen-
tiation requires a combination of several stimuli associated
with different effects, and why the amount and sequence of
stimuli might be relevant for the eventual differentiation suc-
cess rate.
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APPENDIX: SUFFICIENT CONDITIONS PRESWITCH

Equation �4� can be rewritten in a dimensionless form
for n=2 as

d

d

x =

�x2 + 1

1 + �D + �x2 − x �A1�

by substituting x= �mPkP /bP�xP, 
=kPt, �=aPbP /mP
2 kP

2 ,
�=cPPbP

2 /mP
3 kP

2 , �D=zD /bP.
�I� First, we derive the necessary and sufficient condi-

tions for Eq. �A1�, zD=0, having exactly two �non-negative�
stable equilibrium states, which is equivalent to the existence
of exactly three solutions x to

d

d

x =

�x2 + 1

1 + �x2 − x=! 0. �A2�

All solutions satisfy x�0 since the parameters � ,��0.
Equation �A2� is equivalent to

p�x� ª �x3 − �x2 + x − 1=! 0, �A3�

which has exactly three solutions if and only if the equation

�

�x
p�x� = 3�x2 − 2�x + 1 = 0 �A4�

has two solutions �i� x1,2=����2−3� /3��0 and �ii�
p�x1��0, p�x2��0. It holds that

�i� ⇔ � � �3� ,

�A5�
�ii� ⇔ �0 � � 


1
4 ∧ 0 � � � �s1 + s2��

∨ � 1
4 � � 


1
3 ∧ �s1 − s2� � � � �s1 + s2�� ,

whereas s1= 1
27�−2+9�� and s2= 2

27
�1−9�+27�2−27�3.

Thus, for parameters � ,� satisfying Eq. �A5�, it is guar-
anteed that xP can have an “on” and an “off” state.

�II� Second, we proof that there always exists a finite
stimulus �ª�D

crit�0 such that there is exactly one stable
equilibrium solution x to
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d

d

x =

�x2 + 1

1 + � + �x2 − x=! 0. �A6�

This is equivalent to

q�x� ª �x3 − �x2 + �� + 1�x − 1=! 0, �A7�

which in turn has exactly one solution if

�

�x
q�x� = 3�x2 − 2�x + �� + 1� = 0 �A8�

has at most one solution.
It can be shown that this holds if and only if

�2�3���+1�, i.e., if and only if ���2 /3�−1. Since from
�I� one knows 1��2 /3���, it is 0�� and there always
exists a �crit�� such that there is exactly one stable equilib-
rium solution.

Thus, there is always a stimulus �D that can irreversibly
switch off xP.
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