
A FEEDBACK APPROACH TO BIFURCATION

ANALYSIS IN BIOCHEMICAL NETWORKS

WITH MANY PARAMETERS

Steffen Waldherr 1 and Frank Allgöwer
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Abstract: Feedback circuits in biochemical networks which underly cellular sig-
naling pathways are important elements in creating complex behavior. A specific
aspect thereof is how stability of equilibrium points depends on model parameters.
For biochemical networks, which are modelled using many parameters, it is typ-
ically very difficult to estimate the influence of parameters on stability. Finding
parameters which result in a change in stability is a key step for a meaningful
bifurcation analysis. We describe a method based on well known approaches from
control theory, which can locate parameters leading to a change in stability. The
method considers a feedback circuit in the biochemical network and relates stability
properties to the control system obtained by loop–breaking. The method is applied
to a model of a MAPK cascade as an illustrative example.
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1. INTRODUCTION

Feedback circuits are an important structural fea-
ture of biochemical networks (Tyson and Othmer,
1978). The presence of complex behavior such as
bistability, i.e. the existence of several stable equi-
libria, and sustained oscillations can be attributed
to the presence of feedback circuits (Cinquin and
Demongeot, 2002; Kaufman and Thomas, 2003).
These types of complex behavior are directly re-
lated to how feedback circuits influence stability
properties of equilibria. In consequence, stability
analysis of biochemical networks involving feed-
back is a recurring field of interest, and several
theoretical results have been obtained (Dibrov et

al., 1982; Thron, 1991; Angeli and Sontag, 2004).

Models for biochemical networks in cellular signal-
ing typically contain a large number of parameters
whose values are not exactly known and which
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can even vary due to differential gene expression
(e.g. the concentration of an enzyme) or external
influences (e.g. cofactors). These parameters often
have a considerable influence on stability, which
needs to be evaluated in order to understand the
function of a network (Eißing et al., 2007; Kim et

al., 2006).

A classical tool to study the influence of parame-
ter variations on stability is bifurcation analysis.
It has been applied to many cellular signalling
systems, such as the lac operon (Yildirim and
Mackey, 2003) and the MAPK cascade (Marke-
vich et al., 2004; Chickarmane et al., 2007), to
name but a few. When considering models with
many parameters, one faces the difficulty that in
classical bifurcation analysis, only one parameter
at a time can be varied. Thus the effect of simul-
taneous variations in several parameters can not
be evaluated properly.
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In this paper, we present a new approach to lo-
cate bifurcations in systems with feedback loops
containing many parameters which may be varied
simultaneously. To this end, we make use of an ap-
propriate frequency domain description of the sys-
tem and of mathematical conditions representing
necessary conditions for a bifurcation. The paper
is structured as follows. In Section 2, we present
the theoretical results required for our approach
and suggest an optimization–based method to ac-
tually find interesting parameter values. In Sec-
tion 3, we apply these results to a model of the
MAPK cascade with a negative feedback circuit
(Kholodenko, 2000). The relevance of our results
is discussed in Section 4. The mathematical proofs
of the theoretical results are not presented in this
paper but will be provided elsewhere (Waldherr
and Allgöwer, in preparation).

2. THEORETICAL BACKGROUND

2.1 The loop–breaking approach

We consider a nonlinear differential equation
which may describe the biochemical network con-
stituting a cellular signaling pathway,

Σ : ẋ = F (x, p), (1)

with x ∈ Rn and p ∈ P , where P is a con-
nected subset of Rm. Typically, x will represent
the concentrations of the signaling molecules, and
p collects parameters like reaction constants or
enzyme concentrations. We assume that an equi-
librium point x̄(p) exists for all parameter values
and can be computed at least numerically, such
that F (x̄(p), p) = 0 for all p ∈ Rm.

Mathematically, the system (1) is said to contain
a feedback circuit if the influence graph of its
Jacobian ∂F

∂x
contains a nontrivial loop (Cinquin

and Demongeot, 2002). We want to study the in-
fluence of such a feedback circuit on the dynamical
properties of the system. Control theory provides
efficient tools to study this problem. A useful
approach in our setup is to consider the system
(1) as a closed loop control system. It is then
possible to study the corresponding open loop
system, and one can resort to the rich stability
theory developped for control systems.

An open loop control system corresponding to
the closed loop system (1) is obtained by loop
breaking, as defined in the following.

Definition 1. A loop breaking for the system (1)
is a pair (f, h), where f : Rn ×R×Rm → Rn is a
smooth vector field and h : R

n → R is a smooth
function, such that

F (x, p) = f(x, h(x), p). (2)

The corresponding open loop system is then given
by the equation

σ :

{

ẋ = f(x, u, p)

y = h(x).
(3)

The closed loop system can again be obtained
by “closing the loop”, i.e. setting u = y. Notice
that by the assumption that an equilibrium exists
for the closed loop system, the open loop system
also has the equilibrium x̄(p) when choosing u =
h(x̄(p)). This input is denoted as ū(p) = h(x̄(p)).

Since our main interest is in stability properties
of the equilibrium point x̄(p), we can restrict the
analysis to the linear approximation of the sys-
tems (1) and (3) around the equilibrium point. By
using Laplace transformation, the linear approxi-
mation of the open loop system (3) can be repre-
sented by a linear parameter-dependent transfer
function

G(p, s) =
k(p)q(p, s)

r(p, s)
, (4)

where q and r are polynomials in the complex
variable s with coefficients depending on p. As
a technical restriction, we assume that the open
loop system has no poles or zeros on the imaginary
axis, i.e. r(p, ·) and q(p, ·) are assumed to have no
roots on the imaginary axis for any value of p ∈ P
throughout this section.

2.2 Properties of the closed and open loop systems

Stability of an equilibrium point of the closed loop
system depends on the position of the eigenvalues
of the Jacobian ∂F

∂x
(x̄(p), p). To characterize these

eigenvalues from conditions on the open loop
system, we have the following theorem.

Theorem 1. Let A(p) = ∂f
∂x

(x̄(p), ū(p), p) and

Acl(p) = ∂F
∂x

(x̄(p), p). Assume that s0 ∈ C is not
an eigenvalue of A(p). Then s0 is an eigenvalue of
Acl(p), if and only if G(p, s0) = 1.

The proof of Theorem 1 is based on a representa-
tion of G as

G(p, s) =
det(sI − Acl(p))

det(sI − A(p))
+ 1.

Parameter values on the border of stability are
characterised by the matrix Acl(p) having eigen-
values on the imaginary axis. To study the corre-
sponding property in the frequency domain rep-
resentation of the open loop system, we introduce
the notation of critical frequencies and gains.

Definition 2. We say that ωc ∈ R is a critical

frequency and kc ∈ R a corresponding critical gain

for the transfer function G(p, ·) (4), if

kcq(p, jωc)

r(p, jωc)
= 1. (5)
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In general, different critical frequencies and gains
will be obtained for different values of p.

The critical frequencies can be characterized inde-
pendently of the critical gains. This result follows
from (5), because the transfer function value at
the critical frequency has to be a real number.

Proposition 1. ωc is a critical frequency for G(p, ·),
if and only if

Im(q(p, jωc)r(p,−jωc)) = 0. (6)

There exists a unique corresponding critical gain
for any critical frequency ωc, which is given by

kc(p, ωc) =
r(p, jωc)

q(p, jωc)
. (7)

The equation (6) is a polynomial in ωc, thus all
critical frequencies can be computed numerically
for fixed parameters p. The set of all critical
frequencies for the transfer function G(p, ·) is
given by

Ωc(p) = {ω ∈ R | Im(q(p, jω)r(p,−jω)) = 0}
(8)

The concept of critical frequencies and critical
gains can be understood intuitively when consid-
ering the Nyquist plot of the transfer function
G(p, jω). A critical frequency is any value ω at
which the Nyquist plot crosses the real axis. The
corresponding critical gain is the value k(p) = kc

which scales the Nyquist plot in such a way that
the crossing point at the critical frequency is
mapped to 1 in the complex plane. However, this
intuitive way of scaling the Nyquist plot would
require to keep all critical frequencies in Ωc(p)
constant when varying parameters, which would
be a strong restriction. The next section presents
an approach to overcome this restriction.

2.3 A minimal set of critical frequencies

The number of critical frequencies that exist for
a given open loop system is often predefined by
the position of the open loop poles and zeros in
the left or right half complex plane. The following
proposition guarantees the existence of a minimal
number of critical frequencies.

Proposition 2. Let α = |p+−p
−

+z
−
−z+|, where

p+ (p
−

) is the number of poles of G(p, ·) in the
right (left) half complex plane and z+ (z

−
) is the

number of zeros of G(p, ·) in the right (left) half
complex plane. Then, for any p ∈ P , Ωc(p) has at
least α distinct elements, if α is odd, and at least
α − 1 distinct elements, if α is even.

Since we assumed that G(p, ·) has no poles or zeros
on the imaginary axis, the number α is the same

for all parameters p ∈ P . Thus, it can be used to
characterise a set of critical frequencies as being
minimal.

Definition 3. Under the assumptions of Prop. 2,
the set of critical frequencies Ωc(p) is called mini-

mal, if it contains exactly the minimal number of
elements according to Prop. 2.

If Ωc(p) is minimal, we can label the roots of
(6) in a consistent way, and write Ωc(p) =
{

ω1
c (p), ω2

c (p), . . . , ωα
c (p)

}

, where the ωi
c can be

identified with different solution branches of the
polynomial equation (6).

2.4 Existence of critical parameter values

The concept of critical frequencies and gains is
now applied to the problem of how stability de-
pends on parameters. We study the problem of
finding critical parameters pc ∈ P on the border
of stability, i.e. such that the eigenvalues of the Ja-
cobian Acl(pc) are located on the imaginary axis.
Then there exist typically parameters p0 and p1

in a neighborhood of pc such that the equilibrium
x̄(p1) is stable and x̄(p2) is unstable.

The following theorem uses the loop–breaking
approach and the concept of critical frequencies to
characterise the existence of critical parameters.

Theorem 2. Assume that Ωc(p) is minimal for all
p ∈ P . Then there exists pc ∈ P such that jωi

c(pc)
is an eigenvalue of Acl(pc), if and only if there
exist p0, p1 ∈ P such that G(p0, jω

i
c(p0)) ≤ 1 and

G(p1, jω
i
c(p1)) ≥ 1, for ωi

c(·) ∈ Ωc(·) and for any
i ∈ {1, 2, . . . , α}.

Thus, instead of having to look at how the n

eigenvalues of the closed–loop system change with
parameters, we have reduced this to one number,
given by G(p, jωi

c(p)), which contains all informa-
tion about whether the system changes its sta-
bility properties when changing parameters. The
result is global in the sense that the parameters
p0 and p1 can be arbitrarily far apart from each
other, still under the given conditions existence of
critical parameters pc is guaranteed.

2.5 Searching for critical parameter values

The theoretical approach outlined above can be
used to search for parameter values such that
the equilibrium point x̄(p) of the closed loop
system (1) changes its stability. For a biochemical
system, there are often nominal parameters p0,
giving rise to the equilibrium point x̄(p0). We want
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to find parameters p1 such that x̄(p0) and x̄(p1)
have different stability properties.

In view of the methods presented in this paper,
given the open loop transfer function (4), one first
needs to identify the critical frequency that is to
be considered. This choice depends on the type of
stability change one is looking for. When taking
ωc = 0, it is possible to search for zero eigenvalues,
and if ωc > 0, nonzero imaginary eigenvalues may
be encountered, typically giving rise to a Hopf
bifurcation in the closed loop system. The nominal
transfer function value at the critical frequency
is G(p0, jωc(p0)). To change stability properties,
we will then define a value γ as either γ > 1, if
G(p0, jωc(p0)) < 1, or as γ < 1 otherwise. Then,
any solution to the nonlinear equation

G(p1, jωc(p1)) = γ (9)

gives parameters p1 such that x̄(p0) and x̄(p1)
have different stability properties as indicated by
the chosen critical frequency ωc. This method has
been implemented using a nonlinear constrained
optimization algorithm from the Matlab Opti-
mization Toolbox (The MathWorks Inc., 2006).
It allows to efficiently compute parameter values
for the desired transfer function value for medium
sized systems, as the example presented in the
following section illustrates.

Once a parameter p1 is known, we can use a
straight line going from p0 to p1, defined as
pµ = p0 + µ(p1 − p0). The change in dynamical
behaviour along this line can then be studied
using classical bifurcation analysis with respect to
µ, implemented usually via continuation methods
(Kuznetsov, 1995). In this study, the software
AUTO (Doedel et al., 2006) has been used for the
bifurcation analysis along the parameter line pµ.

3. APPLICATION TO A MAPK SIGNALING
MODULE

3.1 Model description

The method presented in Section 2 has been
applied to an ODE model of a mitogen activated
protein kinase (MAPK) signaling module. MAPK
signaling is a recurring motif in cellular signaling
pathways, and typically appears in a cascade
involving three levels (Pearson et al., 2001).

For this study, we consider a mathematical model
for the Ras/Raf signaling pathway similar to the
one presented by Kholodenko (2000). The inhibi-
tion of the upstream molecule SOS by activated
MAPK, the lowest level in the cascade, constitutes
a negative feedback circuit around the cascade.
Via the loop–breaking approach, the influence of
this feedback connection on existence of sustained
oscillations in kinase activity is analysed.

1

2

3 4

56

7 8

910

Fig. 1. Illustration of the MAPK cascade model.

Reaction Rate

v1 V1
x1t−x11

(1+x32/Ki)(Km1+x1t−x11)

v2 V2
x11

Km2+x11

v3 k3x11(x2t − x21 − x22)

v4 k4x11x21

v5 V5
x22

Km5+x22

v6 V6
x21

Km6+x21

v7 k7x22(x3t − x31 − x32)

v8 k8x22x31

v9 V9
x32

Km9+x32

v10 V10
x31

Km10+x31

Table 1. Reaction rates in the MAPK
cascade model

The structure of the model is illustrated in Fig. 1.
The reaction rates as labeled in the figure are
displayed in Table 1. The concentrations have
been denoted as x11 = [MAPKKK*], x21 =
[MAPKK*], x22 = [MAPKK**], x31 = [MAPK*]
and x32 = [MAPK**]. The concentrations of un-
phosphorylated kinases can be computed by con-
servation laws and the three parameters x1t, x2t

and x3t for the total concentrations of the three
kinases. The difference to the model from Kholo-
denko (2000) is that the phosphorylation reactions
3, 4, 7 and 8 are assumed to follow mass ac-
tion rather than Michaelis-Menten kinetics. This
is reasonable since the Michaelis-Menten kinetics
assumes low enzyme concentration compared to
the substrate, whereas the concentrations of the
kinases are in a comparable range here. Nominal
parameter values have been adopted from Kholo-
denko (2000), and are shown in Table 2 as p0.

Using the reaction rates from Table 1, the model
can be written as a system of five ODEs with 20
parameters:

ẋ11 = v1 − v2

ẋ21 = v3 + v5 − v4 − v6

ẋ22 = v4 − v5

ẋ31 = v7 + v9 − v8 − v10

ẋ32 = v8 − v9

(10)
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Fig. 2. Convergence to steady state for parameters
p0 (dashed line) and sustained oscillations for
parameters p1 (solid line). The oscillations
coexist with an unstable equilibrium (dotted
line).

For the nominal parameters p0, the model has a
stable equilibrium x̄(p0). Solutions of the model
converge quickly to the steady state, as depicted
in Fig. 2.

3.2 Parameters for a change in stability properties

This section describes the application of the
method presented in Section 2 to the problem of
finding destabilizing parameters for the MAPK
cascade model (10).

The first step is to choose a suitable loop breaking.
For the MAPK cascade, an intuitive approach is
to break the loop at the feedback inhibition of
reaction v1 by MAPK**. Thus we choose h(x) =
x32, to select [MAPK**] as an output, and replace
x32 by the input u in the reaction rate v1 to obtain
the dynamics of the open loop system f(x, u, p).

It can be shown that there is a unique equilib-
rium of (10) for any parameters in the biologi-
cally meaningful range. The equilibrium can easily
be computed numerically. A linearisation of the
open loop system around this equilibrium point
and a Laplace transformation gives the transfer
function G(p, s), whose graph is shown in Fig. 3.
The set of critical frequencies is minimal with
α = 3, which can be seen from Fig. 3 by the
observation that the graph of G(p0, jω) encircles
the origin monotonically. The only positive critical
frequency is ωc(p0) = 0.017s−1, and we will con-
sider this frequency in the search for destabilizing
parameters. The corresponding transfer function
value is G(p0, jωc(p0)) = 0.12, corresponding to
the equilibrium x̄(p0) being stable in the closed
loop system.

For the computational approach described in Sec-
tion 2.5, we chose γ = 1.5, such that the value of
the transfer function would have to pass the point
1 when going from its inital value of 0.12 to γ. The
optimization method converges to the parameters

Param. p0 p1 Unit rel. change

V1 2.5 2.4 nM/s 1.05−1

Ki 9 10.6 nM 1.18

Km1 10 9.4 nM 1.06−1

V2 0.25 0.11 nM/s 2.24−1

Km2 8 1.6 nM 4.9−1

k3 0.001 0.0026 1/(s nM) 2.6

k4 0.001 3.5 · 10−4 1/(s nM) 2.8−1

V5 0.75 0.32 nM/s 2.35−1

Km5 15 3.9 nM 3.8−1

V6 0.75 3.7 nM/s 5.0

Km6 15 13.3 nM 1.12−1

k7 0.001 0.0033 1/(s nM) 3.3

k8 0.001 5.0 · 10−4 1/(s nM) 2.00−1

V9 0.5 0.26 nM/s 1.92−1

Km9 15 14.9 nM 1.01−1

V10 0.5 2.5 nM/s 5.0

Km10 15 15.0 nM 1.00

x1t 100 100.0 nM 1.00

x2t 300 300.8 nM 1.00

x3t 300 304.2 nM 1.01

Table 2. Reference parameters p0 and
parameters for instability p1 in the

MAPK cascade model.
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Fig. 3. Nyquist plots of open–loop MAPK model

for parameters p0 (dashed line) and p1 (solid
line).

p1, which give the desired value G(p1, jωc(p1)) =
1.5 at a critical frequency ωc(p1) = 0.0065s−1.
The parameter values in p1 are shown in Table 2.
The maximal single parameter change from p0 to
p1 has been restricted in the numerical implemen-
tation to be not more than a factor of 5. Even with
this restriction, parameters leading to sustained
oscillations have been found. However, 11 out of
the 20 parameters have been changed by more
than 20 % to achieve this.

The graph of G(p1, jω) is shown in Figure 3. For
the new parameters p1, the graph now encircles
the point 1. By the argument principle, we see
that the linearisation of the closed–loop system
around the equilibrium has some eigenvalues in
the right half complex plane and is thus unstable.
The sustained oscillations that appear in this case
are shown in Fig. 2.

In conclusion, our method is able to compute
parameters which render the stable equilibrium
unstable and thus lead to the emergence of sus-
tained oscillations. About half of the parameters
are varied by a non–negligible amount, but all
variations are within the physiological range.
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Fig. 4. Bifurcation diagram along the line pµ,
showing stable equilibrium (solid line), unsta-
ble equilibrium (dashed line) and amplitude
of oscillations (circles).

3.3 Bifurcation analysis along a line

Let us now consider the line pµ = p0 + µ(p1 −
p0). By classical bifurcation analysis with µ as
bifurcation parameter, we can see how the system
changes from the stable to the unstable equilib-
rium. The resulting bifurcation diagram is shown
in Figure 4. As expected, there is a Hopf bifurca-
tion between p0 and p1, at µ = 0.664. The evo-
lution of the limit cycle producing the sustained
oscillations along the line in parameter space is
obtained from the bifurcation diagram.

4. CONCLUSIONS

We introduced some theoretical tools to inves-
tigate the existence of parameters for which a
bifurcation can occur in a dynamical system with
a feedback circuit. These tools gave rise to a new
computational method which allows to search for
parameter values such that the stability proper-
ties of an equilibrium change in a specific way
compared to the nominal parameter values. Our
approach is particularly useful if there are many
parameters in the system which can be varied si-
multaneously, and if the contribution of individual
parameters to stability properties is not obvious.
The ability to directly handle multiparametric
variations is a clear advantage compared to using
only classical bifurcation analysis.

We have shown the application of the proposed
method to a model of a MAPK cascade. Using
relatively small changes to most of the 20 param-
eters in the model leads to a change from a stable
equilibrium to an unstable equilibrium with a sta-
ble limit cycle, producing sustained oscillations.

Note: Matlab and AUTO scripts for the de-
scribed bifurcation analysis are available from the
authors on request.
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E. Bullinger (2007). Steady state and (bi-) stability eval-
uation of simple protease signalling networks. BioSys-

tems.
Kaufman, M. and R. Thomas (2003). Emergence of com-

plex behaviour from simple circuit structures. Comptes

rend. biol. 326, 205–214.
Kholodenko, B. N. (2000). Negative feedback and ultra-

sensitivity can bring about oscillations in the mitogen-
activated protein kinase cascades. Eur. J. Biochem.

267(6), 1583–88.
Kim, J., D. G. Bates, I. Postlethwaite, L. Ma and P. A.

Iglesias (2006). Robustness analysis of biochemical net-
work models. IEE Proc. Syst. Biol. 153(3), 96–104.

Kuznetsov, Y. A. (1995). Elements of Applied Bifurcation

Theory. Springer-Verlag.
Markevich, N. I., J. B. Hoek and B. N. Kholodenko (2004).

Signaling switches and bistability arising from multisite
phosphorylation in protein kinase cascades. J. Cell Biol.

164(3), 353–359.
The MathWorks Inc. (2006). Optimization toolbox. For use

with Matlab.
Pearson, G., F. Robinson, T. B. Gibson, B. E. Xu,

M. Karandikar, K. Berman and M. H. Cobb (2001).
Mitogen-activated protein (MAP) kinase pathways:
regulation and physiological functions.. Endocr. Rev.

22(2), 153–183.
Thron, C. D. (1991). The secant condition for instability in

biochemical feedback-control. 1. The role of cooperativ-
ity and saturability. Bull. Math. Biol. 53(3), 383–401.

Tyson, J. J. and H. G. Othmer (1978). The dynamics
of feedback control circuits in biochemical pathways.
Progr. Theor. Biol. 5, 2–62.

Yildirim, N. and M. C. Mackey (2003). Feedback regulation
in the lactose operon: a mathematical modeling study
and comparison with experimental data. Biophys. J.

84(5), 2841–51.

484


