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Bifurcations leading to complex dynamical behaviour of non-linear sys-
tems are often encountered when the characteristics of feedback circuits in
the system are varied. In systems with many unknown or varying parame-
ters, it is an interesting, but difficult problem to find parameter values for
which specific bifurcations occur. In this paper, we develop a loop breaking
approach to evaluate the influence of parameter values on feedback circuit
characteristics. This approach allows a theoretical classification of feedback
circuit characteristics related to possible bifurcations in the system. Based
on the theoretical results, a numerical algorithm for bifurcation search in a
possibly high-dimensional parameter space is developed. The application
of the proposed algorithm is illustrated by searching for a Hopf bifurcation
in a model of the mitogen activated protein kinase (MAPK) cascade, which
is a classical example for biochemical signal transduction.

1 Introduction

A frequent challenge in the analysis of non-linear dynamical systems is to find pa-
rameter values for which the system undergoes changes in its dynamical behaviour.
Such changes are directly related to the emergence of complex dynamical behaviour.
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Standard cases of complex dynamical behaviour are multistability, i.e. the existence of
several stable steady states, limit cycle oscillations, and non-periodic oscillations.

Feedback circuits are the major structural feature in the emergence of complex
dynamical behaviour. In particular, it can be shown that a positive feedback circuit in
the system is required for multistationarity [9], whereas a negative circuit is typically
required for limit cycle oscillations [22]. This importance of feedback circuits makes
control theory a natural tool for the analysis of complex dynamical behaviour.

Yet, the main properties of a system’s qualitative dynamical behaviour are the loca-
tion and stability of equilibrium points. Knowledge of these is often also useful when
analysing complex dynamical behaviour. It is well known from dynamical systems the-
ory that two stable equilibrium points are separated by an invariant repellor, which
contains an unstable equilibrium point in most cases. Similarly, stable limit cycle os-
cillations usually coexist with an unstable equilibrium point. Also transient behaviour
is often governed by the attraction to and repulsion from equilibrium points. Thus a
convenient first step when studying the qualitative behaviour of a dynamical system
is to look at stability properties of equilibrium points.

A classical tool for analysing the influence of parameter values on the location and
stability of equilibrium points is bifurcation analysis. Bifurcation analysis is done rou-
tinely with numerical continuation methods for one adjustable bifurcation parameter
[12]. Methods for numerical bifurcation analysis in several parameters are now being
developed [8, 24], but due to practical considerations, they remain limited to two or
three adjustable bifurcation parameters.

The challenge to find parameter values for bifurcations is of particular relevance in
the area of biological systems. The main reasons for this are that biological function
is often based on complex dynamical behaviour, and that parameters can vary within
a large range due to environmental or internal conditions.

There are many examples where complex dynamical behaviour of a non-linear bi-
ological system can directly be related to biological function. Some examples from
the specific area of biochemical signal transduction within living cells are given by
bistability in the mitogen activated protein kinase (MAPK) pathway to induce devel-
opmental processes [7], rapid activation of caspases upon an over-threshold stimulus
in programmed cell death [6], and sustained oscillations in circadian clocks [13].

Systems for biochemical signal transduction are usually modelled with non-linear
ordinary differential equations (ODEs). Many models of biochemical systems contain
a high number of model parameters, usually even more parameters than state vari-
ables. A major problem in understanding biochemical systems is that most of these
parameters are not very well known from measurements, and that they often vary sig-
nificantly due to internal or environmental conditions of the cell. Thus analysing the
influence of uncertain or varying parameters on stability properties is a fundamental
issue towards understanding dynamical behaviour of biochemical systems. Moreover,
to avoid overlooking relevant effects it is necessary to consider simultaneous changes
in all adjustable parameters [23, 11].

The requirement of looking at simultaneous changes in several parameters makes the
application of classical continuation methods problematic, as these require to define
a line in parameter space along which equilibrium points are tracked. A good choice



of this line is essential to obtain meaningful results, yet this choice is often done by
intuitive understanding of the system in the better case or iterative trials in the worse.
Often only a single parameter is varied at a time, but then again the choice of the
parameter to vary is not trivial and needs to be done for example via sensitivity
considerations.

In this paper, we present a new method to locate points in a possibly high-dimensional
parameter space for a change in stability properties of equilibrium points, often hinting
to either emergence or loss of complex dynamical behaviour. The method is based on
considering the dynamical system as a closed loop feedback system. It is then possible
to study properties of the original system in terms of an adequately defined open loop
system. If the open loop system is well chosen, then its dynamical behaviour is much
simpler than that of the closed loop system. This simplification makes it possible to
come to conclusions that could not be obtained from the closed loop system alone. In
particular, we show how to classify parameter values where the closed loop system can
undergo local bifurcations of equilibrium points, based on an analysis of the open loop
system. The obtained conditions are used to develop a numerical method for searching
parameter values that lead to a change in stability properties. In theory, this can be
done for parameter spaces of arbitrary dimension, as neither the conditions nor the
algorithm we use depend on the dimension of the parameter space. We consider only
codimension one bifurcations, as they are the case that is generically encountered in
non-linear systems.

We make use of the fact that for stability considerations, it is sufficient to look at a
linear approximation of the system close to the equilibrium. The linearised system is
transformed to the frequency domain for our analysis. The use of frequency domain
methods for bifurcation analysis has already been introduced by Allwright [1, cited
from [15]], and relevant results have also been presented by Moiola and coworkers over
the last decade [16, 17].

Several authors have also studied the problem of finding bifurcations in systems with
many parameters using geometric tools. Based on a description of vectors normal to
a bifurcation manifold [18], a method to search for locally closest bifurcations from
a given reference point was developed by [5]. These approaches can be seen as com-
plementary to our results. A recent application of the geometric concept to biological
systems has been discussed by [14].

Our paper is structured as follows. In Section 2, we introduce the loop breaking
approach and provide the general tools which are necessary for our method. The
main results are presented in Section 3: a frequency domain theorem on topological
equivalence, an existence theorem for critical parameters and a numerical algorithm
to search for parameters yielding a change in dynamical behaviour. Moreover, we
shortly discuss the benefits of our approach compared to a straightforward extension
of classical tools. As an application example, the method is used in Section 4 to
search for possible limit cycle oscillations in an ODE model of a biochemical signal
transduction system.



2 The loop breaking concept

2.1 Problem setup

Consider a parameter-dependent nonlinear differential equation given by
&= F(z,p), (1)

withx € R", pe P C R™ and F': R" x P — R" a smooth vector field.
The system (1) is studied locally at an equilibrium point. In what follows we fre-

quently denote
£=(z,p) eER" x P, (2)

where Z is an equilibrium point and p a corresponding parameter. We call ¢ an
equilibrium—parameter pair of the system (1) in the sense that Z is an equilibrium
for the parameter p. Let M be a smooth connected m-dimensional manifold of
equilibrium—parameter pairs in R™ x P, i.e.

VE e M: F(z,p) = 0. (3)

In the simplest case, there is a unique equilibrium point for each p € P, and one could
use a function Z(p) to characterise the manifold of equilibrium—parameter pairs more
easily. However, the approach taken here is more general and also allows to consider
e.g. saddle-node bifurcations, where existence of a unique equilibrium for each p € P
is not given. For most applications, M can just be considered to be defined by the
equilibrium point equation

F(z,p) =0.

In some cases it may however be beneficial to reduce M using analytical tools before
the analysis presented in this paper, in order to satisfy technical assumptions or to
improve the numerics.

2.2 Loop breaking and closed loop eigenvalues

Mathematically, the system (1) is said to contain a feedback loop if the influence graph
of its Jacobian %—I; contains a nontrivial loop [3]. Let us now assume that (1) contains
a feedback loop. This assumption is not restrictive, because without a feedback loop,
the analytical expressions for the eigenvalues in terms of parameters and the state
variables can be taken directly from the diagonal of the (possibly permuted) Jacobian
%—5. In this case, it is usually easy to find parameter values for a change in stability
properties of the equilibrium points.

In the feedback loop approach, an input—output system which corresponds to the
original system is obtained by breaking the feedback loop. As seen from the following

definition, the original system can be recovered by closing the feedback loop again.

Definition 1. A loop breaking for the system (1) is a pair (f,h), where f : R™ x R x
P — R™ is a smooth vector field and h : R™ — R is a smooth function, such that

F(z,p) = f(z, h(z), p). (4)



The corresponding open loop system is then given by the equation

T = f(m,u,p)
y = h(z),

and the closed loop system (1) is recovered by letting u = y. Note that there is a
direct relation between equilibrium points in the closed and the open loop system: for
an equilibrium—parameter pair (Z,p) of the closed loop system (1), setting the input
u = h(Z) in the open loop system (5) leads to (Z,p) being an equilibrium—parameter
pair of (5). We denote @ = h(Z).

To deal with the question whether different equilibrium-parameter pairs in M can
have different stability properties, it is reasonable to consider the linear approximation
of the system (1) close to some pair £ € M. Ounly the pairs where the Jacobian %—i(f)
has eigenvalues on the imaginary axis are candidate points for local bifurcations. Any
such pair ¢ is called a critical point, and is denoted as &..

The linear approximation for the open loop system (5) in the neighbourhood of the
equilibrium—parameter pair £ € M is given by

z=A()z+ B()u
n=C(§)z

where z =z — 2, n =y —u, p = u—1u, A€) = $L(z,u,p), B(&) = G (z,a,p),
C(&) = ().

The linear approximation of the closed loop system (1) can then be easily charac-
terised as follows.

(5)

Proposition 1. The linear approzimation of the system (1) close to & € M is given

by
2= (A(§) + B(§)C(§)) z = Au(§)=. (7)
Proof. This follows directly from the loop breaking definition (4) and the chain rule.
O

The linearised open loop system (6) can also be described using its transfer function,
which is defined as

sI — A(¢) B(&))
c() 0
det(sI — A())

(8)

det (
G(&,5) = C(&) (s — A()) ' B(§) =

with the complex variable s € C.
The following lemma is a tool to characterise eigenvalues of the closed loop system
(1) by analysing the open loop system (5).

Lemma 1. 5o € C is an eigenvalue of Ay(€), if and only if one of the following
conditions holds:

(i). so is not an eigenvalue of A(§) and G(§,s0) = 1;



(ii). so is an eigenvalue of A(§) and det <SOIC(§(§) %(5)) =0.

The proof is provided in the appendix. In the following, Lemma 1 is used with sy on
the imaginary axis, to characterise critical points £, with the condition G(&., so) = 1.

2.3 Critical frequencies and imaginary closed loop eigenvalues
In this section, the transfer function G is represented as a complex rational function
with real coefficients, i.e.

k(©)a(S, s)

— e, 9)
r(€,s)

where k(§) € R and ¢(¢, s), (&, s) are polynomials in s with real scalar functions of ¢
as coefficients.
Moreover, we make the following technical assumption.

G(&s) =

(A1) The transfer function G(&,-) does not have poles or zeros on the imaginary axis
for any £ € M, i.e.

VEe MVYweR: k(&)q(§, jw) # 0 and r(&, jw) # 0. (10)

In addition, the degrees of ¢(§,s) and r(£, s) in s are constant with respect to

EeM.

Starting from the premise that we are interested in stability changes produced by
changing the characteristics of the feedback loop that was broken in (4), this assump-
tion is usually satisfied.

The notion of a critical frequency which is introduced in the next definition will be
useful to compute possible eigenvalues of the closed loop system (7) on the imaginary
axis.

Definition 2. w, € R is said to be a critical frequency for the transfer function

G(¢, jwe) € R. (11)

Obviously, different values of ¢ will result in different critical frequencies. For a
specific &, all critical frequencies are given by the solutions of the equation

Im(Q(E,ij)T(f, _jwc)) =0, (12)

which is a scalar polynomial equation in w., with coefficients that are real scalar
functions of &.
We define the set of all critical frequencies for a specific £ as

Qc(§) = {w € R [ Im(q(&, jw)r(¢, —jw)) = 0}. (13)

Because only the imaginary part is considered, the polynomial in (12) is odd. The
following properties of the set Q.(§) can then be shown easily.



Proposition 2. For any £ € M, the set Q.(§) satisfies the conditions
(1) 0 € Qc(§);
(i1) we € Qc(§) implies that —w. € Q(§);

(iii) either Q.(§) =R or Q.(§) has finitely many elements.

Note that .(£) = R whenever Im(g(¢, jw)r(§, —jw)) is the zero polynomial, which
in turn is the case whenever only the even powers of s in the polynomials ¢(£, s) and
r(&, s) have nonzero coefficients. However, this typically contradicts assumption (A1),
so we will not consider this case specifically.

The relevance of critical frequencies for existence of eigenvalues on the imaginary
axis is shown by the following result.

Proposition 3. Assume that (A1) is satisfied. If jw. with w. € R is an eigenvalue of
Aq(€), then w. € Q.(8).

Proof. By assumption (Al), jw. is not an eigenvalue of A(¢). By Lemma 1, we have
G(&, jwe) =1 and thus w,. € Q.(&). O

The concept of critical frequencies can be understood intuitively when considering
the Nyquist curve of the transfer function G(§, jw). A critical frequency is any value w,
at which the Nyquist curve crosses the real axis. This is obviously a necessary condition
for having G(&, jw.) = 1, which corresponds to the existence of an eigenvalue on the
imaginary axis as shown in Lemma 1. Our concept is thus closely related to the idea
of the gain margin for robustness analysis of linear control systems [21].

Since a variation of the equilibrium—parameter pair ¢ influences the polynomial
equation (12), the set of critical frequencies Q.(§) may change significantly with £. In
particular, the number of elements in £2.(£) in general needs not to be constant with
respect to &, which complicates the analysis. However, one can show that there is a
minimal number of critical frequencies of the transfer function G(¢, s), which depends
on the number of open loop poles and zeros and whether they are located in the right
or the left half-plane. To this end, define the number

a=|py —p- +2- — 24|, (14)

where p4 (p—) is the number of poles of G(&,-) and 2z (z_) is the number of zeros of
G(&,-) in the right (left) half complex plane. Under assumption (A1), « is constant
with respect to £ € M. The number of elements in the set of critical frequencies can
now be characterised by a.

Proposition 4. Let a be defined by (14) and assume that (A1) is satisfied. Then,
for any £ € M, Q.(€) has at least « distinct elements, if « is odd, and at least o — 1
distinct elements, if a is even.

The proof is presented in the appendix.
The above result is used to formulate the property of minimality for the set of critical
frequencies.



Definition 3. Under the assumptions of Proposition 4, the set of critical frequencies
0.(€) 4s called minimal, if it contains exactly & elements, where

a, if ais odd
a= (15)

a—1, if ais even.

This definition is applied in the second technical assumption we are going to make
use of.

(A2) The set of critical frequencies Q.(§) is minimal for any £ € M.

If (A2) holds, we can label the roots of the polynomial equation (12) in a consistent
way, writing

Qc(é) = {wé(&),w?(f),...,wf‘(&)}, (16)

where the w? are continuous functions of the equilibrium—parameter pair £ and can be
identified with different solution branches of the polynomial equation (12).

Given a transfer function G(¢, -) and a corresponding set of critical frequencies Q.(€),
Proposition 4 can be used to easily check the minimality of Q.(§). Graphically, a
sufficient condition for minimality of Q.(§) is that the Nyquist curve G (¢, jw) encircles
the origin monotonically as w varies from —oo to co.

3 Main results

3.1 Topological equivalence of equilibria

Changes in stability properties of equilibrium points are most easily studied using the
concept of topological equivalence. Here, we use a definition for hyperbolic equilibrium
points only (see [12] for more details).

Definition 4. Let £1,& € M be two hyperbolic equilibrium—parameter pairs of the
system (1). & and & are said to be topologically equivalent, if the Jacobians g—i(fl)
and g—i(ég) have the same number of eigenvalues in the left and right half-plane.

It is a well known result from dynamical systems theory that the topological equiva-
lence of all equilibria in two systems is a necessary condition for topological equivalence
of the flows. Let us consider two variants of the system (1), one with parameter values
p1 and the other with parameter values po. In the simple case when there is only one
equilibrium point in each variant of the system, corresponding to the pairs £; and &,
topological equivalence of &1 and & is a necessary condition for topological equivalence
of the flows. In applications, we are often interested in finding parameter values ps
such that the system (1) changes its dynamical behaviour when varying parameters
from initial values p; to ps. For this problem, it is sufficient to find pairs & and &
which are not topologically equivalent. Due to the continuous dependence of eigenval-
ues on parameters, this can only happen when the Jacobian ‘g—i(fc) has eigenvalues on
the imaginary axis for some critical point . € M. At this point, we can make use of
the methodology developed in the previous section.



To this end, consider the set of critical frequencies Q.(§) for a specific value of the
equilibrium—parameter pair . Define the number §(£) to be the number of elements
we in Q.(€) such that G(&, jwe) > 1, i.e.

ﬁ(g) = card {Wc S QC(E) | G(f,jwc) > 1}a (17)

where card S denotes the number of elements in the set S.

Geometrically, if ©.(£) is minimal, 5(§) gives the winding number of the graph of
G(&, jw) around the point 1 in the complex plane (see Lemma 3 in the Appendix).
The argument principle can then be used to characterise topologically equivalent
equilibrium—parameter pairs of the system (1) via the number 3(§). We first give
some intermediate results as Lemmas before presenting the main theorem. The Lem-
mas are proven in the appendix.

Lemma 2. If the set of critical frequencies Q.(§) is minimal, then in the ordered
sequence of critical frequencies wl(€) < wW2(€) < -+ < w(€), we have

G(&, jwe(€))G(& jwe™ " (€)) <0
where 1 =2,...,a.

Lemma 3. Under the assumptions of Theorem 1, the winding number of the image
of the Nyquist curve T’ under the transfer function G(&;,-), i = 1,2, around the point
1 is given by

lwn(G(&, 1), 1)| = B(&).

Lemma 4. Under the assumptions of Theorem 1, we have

}’LU?’L(G(El,F), 1) - ’LU?’L(G(EQ, F)’ 1)| = |B(€1) - 6(52)|

Theorem 1. Assume that (A1) is satisfied. Let &1,&2 € M be two hyperbolic equilibrium—
parameter pairs of (1) such that Q.(&1) and Q.(§2) are minimal. Then & and & are
topologically equivalent, if and only if

B(&1) = B(&2).

The proof is given in the appendix.

3.2 Existence of marginally stable equilibria

Let us now turn to the problem of how to find parameter values for which a change
in stability properties of equilibria can happen. This is equivalent to searching for
critical points & at which the Jacobian %—5(50) has an eigenvalue on the imaginary
axis. This typically means that &, is part of a submanifold of M that separates regions
of topological equivalence, and in view of Theorem 1 there are typically equilibrium—
parameter pairs £ and & close to & such that 5(&1) # 5(£2). Equivalently, for a
specific critical frequency w?, the transfer function value G(¢, jwi(€)) has to cross the
value 1 when £ varies continuously along a path from & to &. These observations are
formalised in the following theorem.



Theorem 2. Assume that (A1) and (A2) are satisfied. There exists a critical point
& € M such that %—i(fc) has an eigenvalue on the imaginary axis, if and only if there
exist £1,&2 € M such that, for somei € {1,2,...,a},

G(&1,jwi(&1)) <1< G(&a, jwi(&2)), (18)

where wi(€) € Qe(€). In that case, £jwi(.) is an eigenvalue of G (&.).

Proof. By Lemma 1, our assumptions assure that a point &, is critical if and only if
G(&cajwé(gc)) =1

Necessity. Under the condition G(&, jw.) = 1, take & = & = & and (18) follows
trivially.

Sufficiency. Let & and & be such that (18) holds. Connectivity of M implies that
there is a path from & to & in M. Continuity of the critical frequency w’(€) and
the transfer function coefficients result in continuity of G(¢, jw?(€)) with respect to €.
This implies existence of ¢, such that G(&., jwi(€.)) = 1 along any path from & to
&2. U

The proof shows that the critical point &, is usually far from unique. It may be
unique if M is of dimension one, i.e. there is only one free parameter to vary. In
general, one will expect that there is a submanifold of critical points in M separating
regions which represent different topological equivalence classes, where &; is an ele-
ment of one such class, and & is an element of the other class. On this submanifold,
the bifurcations that can be encountered generically are codimension one bifurcations.
Therefore the bifurcation condition provided by Theorem 2 is mainly useful in the
search for codimension one bifurcations, although condition (18) also holds for bifur-
cations of higher codimension.

Also note that the assumptions (Al) and (A2) are sufficient, but not necessary
in Theorem 2. For example, (A2) may be violated, but if the additional critical
frequencies do not lead to a change in the winding number of the transfer function
graph around the point 1, then the conclusion is still valid.

Using Theorem 2, it is easily possible to distinguish dynamical bifurcations from
static bifurcations. In fact, if 7 is chosen such that the critical frequency w (&) = 0 is
considered, A.;(&.) has a zero eigenvalue, which generically corresponds to a saddle-
node bifurcation. If a critical frequency w?(¢) # 0 is considered, A.(&.) has conjugated
imaginary eigenvalues, and one will generically get a Hopf bifurcation.

A graphical illustration of Theorem 2 is given in Fig. 1. The relation to the classical
Nyquist stability criterion also becomes clear from this figure.

3.3 An algorithm for a numerical parameter search

In this section, we discuss an algorithm to search for parameter values that will lead
to a change in stability properties of an equilibrium point. We assume that a starting
parameter p; and a corresponding equilibrium Z; are known, which we combine in the
pair & = (Z1,p1) € M. It is reasonable to assume that the pair & is not critical,
otherwise it is usually straightforward to find parameter values yielding equilibrium
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Figure 1: Tllustration of Theorem 2 in the Nyquist plot. Full line: G(&1, jw), dashed
line: G(&a, jw), both for w > 0. The theorem asserts existence of a Hopf
bifurcation on any path between &; and &.

points with different stability properties. Moreover, the manifold M is assumed to
be defined by a nonlinear equation of the form ¢(¢) = 0. Often, one can directly use
@ = F, but sometimes a modification is useful to exclude some solutions if the equation
F(z,p) = 0 is known to have multiple solutions. The aim of the algorithm is to find
an equilibrium—parameter pair {2 € M such that & is not topologically equivalent to
&1. The main theoretical basis of the algorithm is the result of Theorem 2. Thus it is
also possible to search specifically for either static or dynamic bifurcations on a path
from & to & by choosing an appropriate critical frequency.

In order to put the problem in the framework developed in this paper, a loopbreaking
for the system (1) has to be defined. Then, by looking at the resulting transfer function
G(&, ), possible changes in stability properties can be determined. In particular one
has to decide whether to search for a static or for a dynamic bifurcation. This leads
to the choice of a critical frequency w’ which is to be considered in the algorithm.

Denote the transfer function value for the critical frequency at a point £ as v(§). At
the starting point &1, this value can be computed as

v(é1) = G(&1, jwi(&r)). (19)

Note that an analytical expression of the function v can be derived directly, maybe with
the support of computer algebra for more complex systems. This derivation requires
only basic algebraic manipulations, differentiation and matrix inversion, which can all
be done symbolically for typical system classes. In particular, it is not required to
have an analytical solution of the equation F(x,p) = 0 to construct .

Now two cases have to be distinguished.

1. If v(&1) < 1, the algorithm searches a pair £ € M such that (&) > 1.

2. If v(&) > 1, the algorithm searches £ € M such that (&) < 1.

11



The algorithm we are using is best described by the term gradient-directed continua-
tion method. Continuation methods [20] are popular in numerical bifurcation analysis,
where they are used to trace the equilibrium curve in the combined state-parameter
space. In our algorithm, continuation is used to stay on the manifold M. However,
a continuation method alone is not sufficient, as M is m-dimensional with typically
m > 1. Thus, the continuation is complemented with a gradient ascent or descent
approach to achieve the desired value for v(&2).

Since the algorithm is based on Theorem 2, assumptions (Al) and (A2) need to be
checked. Depending on the system under consideration, this may be a difficult problem
globally over the equilibrium-parameter manifold M. However, for the validity of the
algorithm’s results it is sufficient that (A1) and (A2) are satisfied locally along the path
used for the continuation. These checks can be directly included in the algorithm. If
the assumptions are violated at one point, the algorithm issues a warning message. The
results may still be valid, because (A1) and (A2) are only sufficient, but not necessary
conditions for Theorem 2. However, the results need to be checked separately in this
case.

In detail, the algorithm works as follows. We are discussing case 1 only, small
extensions are required for dealing with both cases.

1. Initialisation. Set £(©) = &. Choose numerical parameters: A~ for the minimal
required change in (&) per iteration, 6(°) as the initial step size and d,min (Smaz)
as minimal (maximal) step size.

2. Checking assumptions. (Al) is checked locally by computing the poles and
zeros of G(€()5). (A2) is checked locally by computing the critical frequencies
Q.(¢™) and applying Proposition 4. If the assumptions are not satisfied, output
a warning.

3. Prediction step. This step assures the desired increase in y(§).
a) Compute the gradient V-~ (E (i)).
b) Compute the subspace which is tangent to M in the point £®:

Tey M = null g—? (5@) . (20)
¢) Project Vv (€@) on Tey M:
v = Proj (V'y (5@) ,Tgi)/\/t) . (21)
d) Set the predicted point

€l () g 500,00, (22)

pre

Step size control is used in the sense that 6(9 is varied to assure that the
condition

7 (650) =7 (69) = Ay (23)

is satisfied, while keeping 6, < 8 < 8-

12



4. Correction step. Generally, S}ng) ¢ M, so a correction step is required to

achieve £(H1) € M. To this end, the Gauss-Newton method is used to solve the
nonlinear equation

p(E) =0
v (6““)) = (E,(,it”)

for €041 where g,(,it” is used as starting point for the Gauss-Newton algorithm.
If the Gauss-Newton algorithm converges, the algorithm takes the solution as
value for €01 and proceeds to the next step. Otherwise, the algorithm reduces
the step size 6V and goes back to 2d).

(24)

5. Finishing criterion. Compute v (¢0+Y). If 4 (€0FD) > 1, finish successfully,
otherwise iterate to step 2.

If the algorithm finishes successfully, it does so in a finite number of steps with a
previously known upper bound due to step size control via inequality (23).

However, in the same way as classical continuation methods, the algorithm may
fail if the Gauss-Newton algorithm in step 3 does not converge, and the step size 6(*)
may not be reduced further due to the constraint d,,;, < ) at the same time. This
problem may appear if the system is numerically ill-conditioned, but can typically
be avoided by choosing a smaller value for either Ay or for §,,;,, with the drawback
of increased computational effort. Also, it can in general not be excluded that the
function (£) has local extrema, which may pose problems to the algorithm. Such
problem may be detected numerically from the vector v(*) taking very small values.
However, in several applications we have not encountered this problem so far.

The algorithm as described above does not consider constraints on the parameters
p. Such constraints can be included by slight modifications in steps 2 and 3. If the
border of the set P is approached during the iteration, the modified algorithm projects
the gradient V~ (E (i)) on the intersection of the tangent to M and the tangent to the
border of P. With additional step size control, a constraint violation is then avoided.

3.4 Discussion of the feedback loop approach

Two key steps in the approach we have taken are the transformation of the problem
to the frequency domain and the consideration of the critical frequencies. These steps
require an elaborate setup and therefore need to be well justified.

Approaching the given problem in the time domain would typically require to deal
with the eigenvalues of the Jacobian %—5 on the considered manifold of equilibrium
points. In particular, it would require to consider how the eigenvalues change if the
parameters change. Going to the frequency domain will typically reduce the num-
ber of variables that are to be tracked with changes, because there are typically less
critical frequencies than eigenvalues. For a minimum phase system, the number of crit-
ical frequencies is not more than the relative degree of the transfer function G(&, s).
Moreover, the position of eigenvalues has to be tracked in the two dimensions of the
complex plane, whereas the transfer function values at critical frequencies are always
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real numbers. In particular, it would be difficult to estimate from the eigenvalues of
the system for some starting parameters, which pair of eigenvalues should be pushed to
the imaginary axis in order to obtain a Hopf bifurcation. Using the frequency domain
approach, the critical frequency for which the transfer function value should be pushed
towards 1 can typically be determined easily.

In classical bifurcation analysis, so called bifurcation test functions are used to check
whether a bifurcation may occur when going from one parameter value to another one
[12]. The test function ¥ is defined such that ¥({.) = 0 if the bifurcation that is
tested for occurs at &.. Bifurcations are detected by the test function ¥(¢) changing
sign when going from one point to the other, i.e. if U(£;)¥ (&) < 0, then a bifurcation
occurs between &1 and &. For bifurcations of codimension one, suitable test functions
are known and are routinely used in numerical continuation algorithms. Note that in
the frequency domain approach, the expression G(&, jw.(§)) — 1 is a test function for
a generic saddle-node bifurcation, if we consider w. = 0, and it is a test function for a
generic Hopf bifurcation when considering w. # 0. Computing classical test functions
for a given point £ requires a similar or slightly less computational effort as computing
the transfer function values at the critical frequency. So we need to justify why we do
not use classical test functions for bifurcation search in a high-dimensional parameter
space.

Because classical continuation methods cannot be used in a high-dimensional pa-
rameter space, one has to look for different approaches. A naive approach to find
parameters for a bifurcation would be to solve directly the equations

v(E) =0

F(e) =0, (#)

However, in most cases this will be numerically infeasible with classical test functions,
even if the combined parameter state space is of very low dimension. A more sophis-
ticated approach could use basically the same algorithm that we have presented in
Section 3.3, the gradient-directed continuation method, and just use the gradient of
a classical bifurcation test function instead of the gradient of the transfer function
G(&, jwe(§)). We have also implemented this approach for several examples, but run
into numerical problems for any system of medium complexity. In particular, the
analysis presented in the next section did not work with a classical bifurcation test
function for a Hopf bifurcation due to numerical problems. These problems seems to
be related to our observation that the value of the classical bifurcation test function
seems to be numerically much less well behaved with respect to parameter variations
than the transfer function value at critical frequencies.

4 Application to a biological signalling system

In this section, we apply the theoretical results and the numerical algorithm described
in the previous section to a system for biochemical signal transduction. A central
element of the signal transduction in eukaryotic cells is the mitogen activated protein
kinase (MAPK) cascade. It appears in several signalling pathways and is related to
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Figure 2: Illustration of the MAPK cascade model with reaction numbers.

cell differentiation, proliferation, and response to external stress. Several ODE models
for this system have been proposed during the last decade [19].

The MAPK cascade consists of three layers of kinase proteins, where each kinase
activates the next layer, and the last layer corresponds to the output of the cascade.
We consider the MAPK cascade as it appears in the EGF (epidermal growth factor)
receptor pathway [2]. There, the three kinases in the order how activation proceeds
are Raf, MEK (MAPK/ERK kinase), and ERK (extracellular-signal-regulated kinase).
Active ERK phosphorylates and inhibits SOS (son of sevenless homologue), which is
required in the activation of Raf [2]. This constitutes a negative feedback loop in the
system. The model we use here is a slight simplification of a model suggested by [10],
and it is also a subsystem of the EGF pathway as modelled by [2]. A cartoon of the
biochemical reactions incorporated in the model is shown in Fig. 2.

In the equations, the concentrations of phosphorylated kinases are denoted as x1; =
[Raf*], To1 = [MEK—P], T2 = [MEK—PP], Ir31 = [ERK—P] and I32 = [ERK—PP] The
concentrations of unphosphorylated inactive kinases Raf, MEK and ERK need not be
included as state variables, as they can be computed via the conservation laws

[Raf] =+ T11 = L1t
[MEK] + 221 + @22 = ot
[ERK] + x31 + 232 = 3¢,

where x1;, o and x3; are parameters for the total concentrations of kinases, which
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Table 1: Reaction rates in the MAPK cascade model

Reaction Rate
U1 Vi (1+132/Kf)1(tfzjl111+11t*In)
v2 V2 sz;izu
U3 k3$11($2t — T21 — 5E22)
U4 ksw11721
vs Vo Ryt
ve 6 Koo +a1
vy kraoo(xsr — w31 — x32)
Ug kgwa2731
vo Vo irobies
V10 Vioeg

are constant. Table 1 shows the mathematical expressions for the reaction rates, with
numbers corresponding to the labels in Fig. 2. Nominal parameter values for the
simplified model have been adopted from [10], and are shown in Table 2 as p;.

Using the reaction rates from Table 1, the model can be written as a system of five
ODEs with 20 parameters:

T11 = U1 — V2

To1 = V3 + U5 — V4 — Vg

igg = V4 — Vs (26)
T31 = V7 + V9 — Vg — V1g

i‘gg = Vg — V9.

The only difference to Kholodenko’s model is in the phosphorylation reactions 3,
4, 7 and 8. The original model uses Michaelis-Menten kinetics for these reactions,
whereas our simplified model uses mass action kinetics. It can be argued that with the
concentrations of all kinases being on the same order of magnitude, the assumptions
for using Michaelis-Menten kinetics in reactions 3, 4, 7 and 8 are not valid anyway,
and one could aim to achieve a similar dynamical behaviour with the simpler model
structure where mass action kinetics are used.

Kholodenko has shown in simulations that the system can show limit cycle oscilla-
tions for some parameter values. Due to the simplifications in four reaction rates, the
model (26) does not oscillate for nominal parameter values p;. Instead, the model has
a stable equilibrium Z; for these parameter values. Solutions of the model converge to
the steady state within 20 seconds, as depicted in Fig. 3.

The question we deal with is whether parameters can be changed such that also the
simplified model shows sustained oscillations. To answer this question, we apply the
algorithm to search for critical parameter values which is described in the previous
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section.

The first step in our analysis is to choose a suitable loop breaking. For the given
system, an intuitive approach is to break the loop at the feedback inhibition of reaction
v1 by ERK-PP. Thus we choose h(z) = x32 and replace 32 by the input u in the
reaction rate vy, thus obtaining the dynamics of the open loop system f(x,u,p).

A linearisation of the open loop system around the equilibrium point and a Laplace
transformation give the transfer function G(&, s), whose graph is shown in Fig. 4. The
problem is now to find parameters ps with a corresponding unstable equilibrium point
Zo. This can be done using the numerical algorithm presented in Section 3.3.

The set of critical frequencies is minimal with o = 3, which can be seen from Fig. 4
by the observation that the graph of G(&1, jw) encircles the origin monotonically and
crosses the real axis three times. The origin of the complex plane is not counted as
crossing, as we have w = +oo there. The only positive critical frequency is w?(&1) =
0.017s71, and we will consider only w? in the search for destabilising parameters,
because our goal is to find a Hopf bifurcation. The corresponding transfer function
value is G(&,jw3(&1)) = (&) = 0.12, corresponding to the equilibrium #; being
stable in the closed loop system.

The goal for the parameter search algorithm is to find parameters such that v(&2) >
1. Then the corresponding equilibrium point Z, will not be topologically equivalent
to the nominal equilibrium z; and we can expect a Hopf bifurcation when varying
parameters from the nominal value p; to the new value ps. To ensure that the algorithm
does not stop at the bifurcation point, but continues to vary parameters until the
oscillations have reached a considerable amplitude, we try to achieve v(&) > 1.5 in
the implementation used here.

In the application of the algorithm to this problem, we set the minimal change in the
transfer function value per iteration Ay = 10~* and the initial step size 6(9) = 10~*.
The Gauss-Newton algorithm in the correction step was constrained to 20 iterations,
but in the step size control the step size §() was already decreased if the Gauss-Newton
algorithm required five or more iterations for convergence. With these settings the
algorithm finishes successfully after 276 iterations, yielding the parameters ps and an
equilibrium Zy with the transfer function value G(&2, jw?(&2)) = 1.52 and the critical
frequency w?(&) = 0.0068 571, where & = (Za2,p2). The parameter values in po
are shown in Table 2. Note that although in principle all parameters could have been
changed when going from p; to po, the algorithm varies only 9 out of the 20 parameters
by an amount of more than 20 %. Since the algorithm uses the gradient of the transfer
function value at the critical frequency, we can presume that the parameters that have
been varied by a larger amount have higher influence on existence of oscillations than
the other parameters.

The graph of G(&2, jw) is shown in Figure 4. For the new parameters ps, the graph
now encircles the point 1. By Theorem 1, we see that the equilibria Z; and Z5 are not
topologically equivalent. Indeed, T is unstable and the system converges to a limit
cycle for parameters p,. The time course of these oscillations is plotted in Figure 3.

In conclusion, our method is able to compute parameters which render the corre-
sponding equilibrium unstable and thus lead to the emergence of sustained oscillations
in the treated example. About half of the parameters are varied by a non—negligible
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Table 2: Reference parameters p; and parameters for instability ps in the MAPK cas-
cade model.

Param. P1 D2 Unit rel. change
Vi 2.5 2.5 nM/s 1.00
K; 9 18.9 nM 2.09
Ko 10 8.1 nM 1.2371
Vs 0.25 0.17 nM/s 1.4371
Ko 8 0.54 nM 14.871

ks 0.001 [ 43-107% | 1/(s nM) | 2.3471
kay 0.001 [ 5.7-10=* | 1/(s nM) | 1.767 ¢

Vs 0.75 0.74 nM/s | 1.0171
Ko 15 7.6 nM 1.987!
Ve 0.75 0.77 nM/s 1.02

K6 15 13.9 nM 1.087!

ke 0.001 | 5.2-107% | 1/(s nM) | 1.937!
ks 0.001 [ 7.9-10~* | 1/(s nM) | 1.277¢

Vo 0.5 0.49 nM/s | 1.027!
Koo 15 15.1 nM 1.01
Vio 0.5 0.51 nM/s 1.01
K10 15 15.4 nM 1.03
T1t 100 100.2 nM 1.00
Tot 300 300.2 nM 1.00
T3t 300 304.4 nM 1.01

amount, but all variations are within the physiological range, the highest variation
being a factor of about 15 in the K,,-value of one reaction. It is also worth mentioning
that the concentration values in the equilibrium did not change significantly, although
this should not be of physiological relevance for the unstable equilibrium.

5 Conclusions

The loop breaking concept is introduced as a theoretical tool to analyse complex
behaviour in ODE systems as frequently encountered in mathematical biology. Based
on this tool, we present results on topological equivalence of equilibria in systems with
high-dimensional parameter spaces and on the existence of critical parameters, for
which stability properties of equilibria may change. In addition, an algorithm is given
to systematically search for critical parameters. Using an ODE model for a MAPK
cascade, we show that the algorithm can be used to efficiently search for parameter
values leading to limit cycle oscillations in the system.

Non-uniqueness of critical parameter values is a problem that is inherent to this kind
of analysis. If the dimension of the parameter space is higher than the codimension of
the bifurcation, then there will be a submanifold of bifurcation points in the parameter
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Figure 3: Convergence to steady state for parameters p; (grey line) and sustained
oscillations for parameters po (black line). The oscillations coexist with the
unstable equilibrium Zs (dotted line).

space. Our algorithm computes one of these points. Starting from a critical point thus
found, one can then use continuation methods to further explore the structure of the
set of critical points.

Another possibility for further studies would be to search for a bifurcation which
is locally closest to some reference parameter values. A method for this has been
presented by [5]. The method requires a bifurcation point where the search is started,
and we expect our algorithm to give a starting point which is better suited for the
method discussed in [5] than a bifurcation search along a random line in parameter
space.

The biological example we study in Section 4 is simple in that it contains only one
feedback loop. For systems with a single feedback loop, the results of the proposed
analysis method are independent of how the loop breaking point is chosen. Of course
many biological systems contain several intertwined feedback loops. Then, the choice
of the loop breaking point needs more attention, because the results in general depend
on this choice. In our experience, it is often beneficial to try to break several feedback
loops at once. Also a comparison of different loop breaking points is usually helpful
and could give hints to the role played by individual loops in the dynamical behaviour
of the system.
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Appendix

Proof of Lemma 1

For simplicity of notation, we drop the dependence on £ of matrices A, B and C. By
Schur’s lemma, we have

det(sI — Ay) = det(sI — A — BC) = det <SI — A _B>

—C 1

Let (sI —A)_; € R"=1D*" denote the matrix (sI — A) with the i-th row deleted. Then,
by cofactor expansion,

sI—A —-B - 1 sI—A)_;
det( _C 1):1-det(sI—A)—Zl(—1) +1+bidet(( 70) )

In the same way,

det (SI__CA _OB) —_— i(q)"ﬂﬂ'bi det <(SI :CA)”)

=1
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and with Prop. 1 it follows that

det(sI — Ag) = det(sI — A) — det (SI ~A B) .

c 0 (27)

S is an eigenvalue of A, if and only if det(sol — A.) = 0. For condition (i), we
have det(soI — A) # 0, and thus the equation

SOI—A —B
det( C 0)_1

det(sOI — A) o

is equivalent to so being an eigenvalue of A.. The claim then follows from (8).
The other case where det(sol — A) = 0 is considered in condition (i), and (27) can
be used directly to prove the claim.

Proof of Proposition 4

Note that « is constant over M due to assumption (A1). Consider the transfer function
G(&, s) for a constant & € M. For ease of notation, we drop £ in the transfer function
in the following.

It is well known from linear control theory that the argument of G(jw) changes by
am when varying w from —oo to oo [4]:

|arg G(joo) —arg G(—joo)| = am.

The symmetry G(jw) = G(—jw) implies that arg G(joo) = — arg G(—joo). From these
two facts, it follows that the argument of G (jw) spans the open interval I, = (—<F, &F)
for w € (—00,0).

Moreover, by Definition 2 the condition w,. € Q.(§) is equivalent to

arg G(jwe) = km, ke Z.

If v is even, the claim follows directly, since there are o — 1 different integer values
for k such that km is inside the interval I,. This corresponds directly to having o — 1
or more critical frequencies.

In the other case, if « is odd, some additional reasoning is needed to prove the
proposition. In this case one has

2 1 2 1
Ia< m2+ , m2+ 7r>, m € 7.

Thus the borders of the interval I, are not at integer multiples of 7, which implies that
in this case there are « different integer values for k such that k is in I, corresponding
to at least « critical frequencies.
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Proof of Theorem 1

The proof for Theorem 1 uses the argument principle from complex analysis, which is
repeated here for completeness [25].

Theorem (The argument principle): Let f be a meromorphic function on the
domain D C C and T a simply closed curve in D such that f does not have a zero
or pole on T'. The winding number wn(f(T'),0) of the image of T' under f around the
origin is given by

wn(f(I),0) = zr — py,
where zy (py) is the number of zeros (poles) of f in the interior of the curve I', counted
according to their algebraic multiplicities.

Note that the winding number is counted in the counter-clockwise direction.

As typically done in linear control theory, we will generally use the imaginary axis
for T', also called the Nyquist curve. This can be seen as a closed curve by first taking
only the interval [—jR, jR] and the half circle with radius R in the right half plane,
and second letting R — co. Thus the interior of I' is the right half plane.

We will first proof the intermediate results given in Lemmas 2-4, before proving
Theorem 1.

Proof. (Lemma 2) If 2.(¢) is minimal, then there is exactly one w. € Q.(£) such that
arg G(&, jw.) = km for each k € Z with kr € I, (where I, is the interval defined in
the proof of Proposition 4). This implies that

|arg G(&, jwe(€)) — arg G(€, jwe ' (€))| = =
and thus G(¢, jwe(€))G(E, jwe (€)) < 0. O

Proof. (Lemma 3) Note that the loop breaking (4) assures that G(§, joo) = G(§, —joo) =
0. Considering also Lemma 2, it follows that every cut of G(§;,T') to the right of the
point 1 is preceded and followed by a cut of G(&;,T") with the negative real axis. Thus
each cut to the right of the point 1 corresponds to one winding of G(&1,T) around the
point 1. Moreover, Lemma 2 assures that these windings all have the same direction
and thus several windings cannot cancel in the total winding number. (|

Proof. (Lemma 4) From assumption (A1), the transfer functions G(&1,-) and G(&2,-)
have the same number of zeros and poles in the left and right half plane. Thus for the
phase differences we have

arg G(&1, joo) — arg G(&§1, —joo) = arg G(&2, joo) — arg G(§2, —joo).

This implies that the winding numbers wn(G(&1,T),1) and wn(G(&,T'),1) have the
same sign and with Lemma 3 we conclude

”LU?’L(G(El,F), 1) - ’LU?’L(G(EQ, F)’ 1)’ = “’LU?’L(G(El,F), 1)| - |’LU7’L(G(€2, F)a 1)”
= |B(&) — B(&)|.
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We are now ready to give the proof of Theorem 1.

Proof. (Theorem 1) By Definition 4, topological equivalence of &; and & is equiva-
lent to the condition that the matrices Ao (&1) and Aq(€2) have the same number of
eigenvalues with positive real part.

From the proof of Lemma 1, we know that

_ daatsl — 4 (©)
G(&,s) — 1= det(sI — A(€))

Using the argument principle, it follows that

wn(G(f, F)’ 1) = ncl(&) - nol(&)a

where ng(§) (ner(§)) is the number of eigenvalues of A.(§) (A(§)) with positive real
part. By assumption, n,;(£1) = nei(€2) and thus & and & are topologically equivalent
if and only if

wn(G(&,T),1) = wn(G(&,T),1).

The claim of the theorem then follows from Lemma 4. O
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