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Abstract— Models of biochemical reaction networks can be
decomposed into a stoichiometric part and a kinetic part. The
stoichiometric part describes the structural mass flows while the
kinetic part describes how the flow rates vary with substrate
concentrations and regulatory interactions. Herein a method
for analyzing the robustness of biochemical networks with
respect to perturbations of the kinetic part is proposed. In
particular, we consider a class of perturbations that modify
the local kinetic slopes while leaving the reaction flow rates in
steady state unchanged. A method for computing the associated
robustness radii for perturbations of single or multiple kinetic
slopes is devised. The corresponding non-robust perturbations
can be implemented in the original nonlinear model through
specific parameter variations described by the perturbation
class. The proposed method is illustrated through application
to the Huang–Ferrell model of MAPK signaling cascades. In
particular, we compute the smallest kinetic perturbations that
translate the nominal utltrasensitive response into a bistable
and oscillatory response, respectively. The results are highly
relevant since MAPK cascades are conserved pathways known
to produce bistability as well as sustained oscillations depending
on the context in which they operate.

I. INTRODUCTION

Robustness of biochemical reaction networks has become

an important issue in systems biology. Typically, robustness

of qualitative properties is of interest, with the most fre-

quently studied property being the qualitative dynamical be-

haviour of a biochemical network. As perturbations, generic

variations in biochemical parameters are often considered.

Such perturbations suggest the use of analysis tools based

on bifurcation analysis, which may however be challenging

in a high-dimensional parameter space [1], [2], [3]. To a

certain extent, measures based on the structured singular

value have been proposed for the robustness analysis of

biochemical reaction networks [4], [1]. Another approach

is the consideration of structural uncertainties, which may

e.g. arise from unmodelled dynamics [5], [6]. For such

perturbations, the use of classical robust control tools is very

efficient, but it is sometimes not so clear how to interpret the

resulting non-robust perturbations.

In this paper, we aim to develop a notion which is an

intermediate between parametric and structural uncertainties.

The basic idea is to consider static variations in the reaction

rate expressions that leave the steady state reaction rates

unaffected, but lead to changes in the reaction rate slopes.
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Such perturbations are defined in this paper as kinetic pertur-

bations. A systematic approach to analyse the robustness of

the qualitative dynamical behaviour with respect to kinetic

perturbations is proposed. It turns out that the problem can be

transformed nicely to a classical setup studied extensively in

robust control theory, and admits explicit solutions in relevant

simple cases.

The paper is structured as follows. In Section II, we

develop the theory of kinetic perturbations and show that it

applies naturally to common biochemical modelling frame-

works. The use of kinetic perturbations for robustness anal-

ysis is discussed in Section III. Section IV contains the

application of the proposed robustness analysis method to

the Huang–Ferrell model of the MAPK signalling cascade.

II. THEORY OF KINETIC PERTURBATIONS

A. Definition of a kinetic perturbation

Consider a biochemical reaction network described by the

ordinary differential equation

ẋ = Sv(x), (1)

where x ∈ R
n is the concentration vector, v(x) ∈ R

m

the reaction flux vector, and S ∈ R
n×m the stoichiometric

matrix.

We are interested in analysing the dynamical behaviour of

the network around a given steady state x0, i.e. Sv(x0) = 0.

The corresponding steady state reaction fluxes are denoted as

v0 = v(x0). For ease of notation, we will frequently write

V = ∂v
∂x

. Locally around x0, the dynamical behaviour is

characterised by the Jacobian of the system (1) evaluated at

x0, which we denote by

A = SV (x0). (2)

From a biochemical perspective, the stoichiometric matrix

contains the structural mass flow interactions, while the re-

action flux vector v(x) describes the dependence of reaction

rates on the substrate concentrations, and also contains the

structural regulatory interactions.

Perturbations to the system that leave the mass flow

structure unaffected can therefore be characterised by a

change of the reaction flux vector, yielding the perturbed

system

ẋ = Sṽ(x), (3)

where ṽ(x) is the perturbed reaction flux vector.

As can be seen from (2), the Jacobian depends on the

stoichiometry as well as the local kinetic slopes, i.e., the

rate derivatives with respect to reactants at the steady state.
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A perturbation of some kinetic parameter will in general

have two separate effects on the local kinetic slopes. First,

the perturbation will modify the slope of the corresponding

reaction. Second, the perturbation will in general also affect

the reaction rates and thereby the steady state of the complete

network. This secondary effect implies that the local slopes

of all reaction rates will change as a result of a single param-

eter perturbation, something that complicates the robustness

analysis and, more importantly, obscures structural insight.

The fact that steady state changes affect most interactions

in the network simultaneously is a major obstacle for the

efficient application of bifurcation analysis techniques to the

problem of parametric robustness. Here, we introduce kinetic

perturbations, which affect the steady state Jacobian V (x0)
of the reaction fluxes, but leave the stationary fluxes v0, and

as a consequence also the steady state concentrations x0,

unchanged.

Definition 1: The system (3) is said to be subject to a

kinetic perturbation, if

ṽ(x0) = v0. (4)

From condition (4), we obtain directly Sṽ(x0) = Sv0 = 0,

and conclude that x0 is also a steady state of the perturbed

system.

Perturbations are often related to parameter variations in

a parameter dependent reaction flux vector v(x, p), where

p ∈ R
q are reaction parameters. The nominal reaction flux

vector is then given by v(x) = v(x, p), and the perturbed

reaction rate vector is

ṽ(x) = v(x, p̃), (5)

with perturbed parameters p̃.

Kinetic perturbations of parametrised reaction rate ex-

pressions can also be related to structural perturbations by

introducing implicit parameters. With the term “implicit

parameters”, we denote any parameters that do not appear in

the nominal model (1), but are introduced as free parameters

only during the model analysis. Reasons for this might be

that these parameters are supposed to be fixed at trivial

constant values through choice of the model class (as in

mass action networks), or that they are related to interactions

within the system that have been neglected in formulating

the nominal model. Still, perturbations that affect implicit

parameters may be relevant to the system and thus should

be considered in robustness analysis.

While the steady state reaction rates are not affected by a

kinetic perturbation, the reaction rate Jacobian at the steady

state will in general change. Similar to the nominal case, we

denote Ṽ = ∂ṽ
∂x

. The change in the reaction rate Jacobian V

at the steady state is denoted by

∆̄ = Ṽ (x0) − V (x0). (6)

The perturbed Jacobian of the system at the steady state

x0 will be denoted by Ã ∈ R
n×n and is given by

Ã = SṼ (x0) = A + S∆̄. (7)

We conclude that as far as the dynamical behaviour in

the neighbourhood of the steady state x0 is concerned,

any kinetic perturbation is completely characterised by the

perturbation matrix ∆̄.

For kinetic perturbations introduced by parameter varia-

tions, it is important that for any given perturbation matrix ∆̄,

the corresponding parameter change is determined uniquely.

In the following section, we show that the parameter change

corresponding to a given ∆̄ can be computed analytically for

the common modelling framework of generalised mass action

networks. Similar results can be derived for enzyme reaction

networks with Michaelis-Menten kinetics, and metabolic

networks where enzymes are subject to allosteric regulation.

B. Kinetic perturbations in GMA networks

In a GMA network [7], reaction rates are given by the

expression

vi(x) = ki

n
∏

j=1

x
αij

j , i = 1, . . . ,m, (8)

where ki > 0 is the nominal reaction rate constant, and

αij ∈ R is the nominal kinetic order of the j-th species.

Notice that as a generalisation from classical mass action

networks, non-integer kinetic orders αij are allowed in GMA

networks. Such kinetic orders are supported by simulation

studies of reaction systems under diffusion constraints [8],

or may represent the aggregation of mechanistic detail in a

single reaction step [7]. For a GMA network with reaction

rates as given in (8), a parameter vector p is introduced that

contains the rate constants ki as well as the kinetic orders

αij , i = 1, . . . ,m, j = 1, . . . , n.

If the nominal model is a classical mass action network,

the αij can be considered as implicit parameters, fixed to

the values given by the stoichiometry of the reaction. Also,

a value of αij = 0 means that the j-th species does not

affect the i-th reaction. Changing this value away from 0
then corresponds to a structural perturbation of the nominal

model.

In the following, we derive explicit expressions for pa-

rameter variations in a GMA network subject to a kinetic

perturbation. From (4), a kinetic perturbation is characterised

by the condition

k̃i

n
∏

j=1

x
α̃ij

0,j = ki

n
∏

j=1

x
αij

0,j

or equivalently

k̃i = ki

n
∏

j=1

x
αij−α̃ij

0,j .

Considering the elements of the reaction rate Jacobian V ,

we obtain

Vij(x) = αijx
−1

j vi(x)

and a kinetic perturbation where the reaction rate Jacobian

is changed additively by ∆̄ is given by

α̃ijx
−1

0,jv0,i = αijx
−1

0,jv0,i + ∆̄ij ,
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or equivalently

α̃ij − αij =
x0,j

v0,i

∆̄ij .

In what follows, let

∆ = (diag v0)
−1∆̄ diag x0, (9)

where ∆ ∈ R
m×n is a suitably scaled perturbation matrix.

Notice that this scaling is only possible if both x0 and v0

have only non-zero components. If this is not the case, the

relation of the perturbation ∆̄ to the parameter perturbation

has to be computed differently.

In terms of ∆, kinetic perturbations by parameter varia-

tions in a GMA network are characterised by

α̃ij = αij + ∆ij (10)

and

k̃i = ki

n
∏

j=1

x
−∆ij

0,j . (11)

In conclusion, we see that kinetic perturbations of a GMA

network change the kinetic order of species in reactions,

while at the same time adjusting the reaction rate constants to

keep steady state reaction rates and steady state concentration

values unperturbed. This result offers an illustrative biochem-

ical interpretation of kinetic perturbations. Biochemically, a

positive ∆ij corresponds to an increase in the cooperativity

of reaction i with respect to species j, while a negative ∆ij

corresponds to an increase in the saturation.

III. ROBUSTNESS ANALYSIS

A. Problem statement

The problem of local robustness analysis is to evaluate

the effects of perturbations on the dynamical behaviour of

the system (1) in a neighbourhood of the steady state x0.

Since steady state concentration values and reaction fluxes

are often well characterised for biochemical networks, we are

specifically interested in perturbations which do not affect

these values, i.e. kinetic perturbations.

Using kinetic perturbations with a scaled uncertainty ma-

trix ∆, the perturbed Jacobian becomes

Ã(∆) = A + S diag(v0)∆(diag x0)
−1. (12)

Notice that this representation of the perturbed Jacobian does

not rely on the results of Section II-B and is independent of

the considered network class.

In general, the goal of robustness analysis is the compu-

tation of the smallest perturbation that leads to a qualitative

change in the dynamical behaviour of the system. To do

this analysis with kinetic perturbations, one first needs to

introduce a measure for the perturbation strength. This is

commonly done by considering a suitable operator norm

‖∆‖. Next, define the robustness radius of the system (1) as

the smallest perturbation for which the perturbed Jacobian

Ã(∆) has an eigenvalue on the imaginary axis:

R = inf{‖∆‖ | σ(Ã(∆)) ∩ jR 6= ∅}, (13)

where σ(A) denotes the spectrum of a square matrix A. In

local robustness analysis, two goals are ususally pursued.

The first goal is to compute the robustness radius R, or

at least lower and upper bounds. As a second goal, we

want to compute a minimum-size non-robust perturbation

∆∗ such that ‖∆∗‖ = R and Ã(∆∗) has an eigenvalue

on the imaginary axis. For GMA networks, a corresponding

parameter vector p̃∗ can be obtained through the expressions

derived in Section II-B.

Due to the proposed reformulation, the robustness problem

with respect to kinetic perturbations is equivalent to a real

µ–problem. From classical robust control theory, the µ–value

is defined as [9]

µ∆(G(jω)) =
(

inf{‖∆‖ | ∆ ∈ ∆ ⊂ R
m×n,

det(Im − ∆G(jω)) = 0}
)−1

.

For the perturbed Jacobian in (12), the transfer function G :
C → C

n×m that needs to be considered is given by

G(jω) = (diag x0)
−1(jωIn − A)−1S diag v0. (14)

Computation of the robustness radius from the µ–value is

then a standard problem in robust control theory [9], with

the solution

R =
(

sup
ω

µ∆(G(jω))
)−1

. (15)

Computation of the µ–value is a difficult problem in

general. For general matrix perturbations, usually only lower

and upper bounds can be obtained. Fortunately, in the anal-

ysis of biochemical reaction networks, already scalar and

vector perturbations provide useful results. These cases are

discussed in the following two sections.

B. Scalar perturbations

The scalar case is encountered if we assume that all

elements of ∆ apart from one are zero. For a biochemical

reaction network, this corresponds to the case where only

the influence of a single species on a single reaction rate

is subject to a perturbation. In the analysis of biochemical

networks, this approach will be useful for the detection of

single fragile interactions. In terms of the robust control

approach outlined in Section III-A, such a perturbation

translates into a scalar uncertainty problem, for which the

robustness radius and a non-robust perturbation are easily

computed.

Assume that the derivative Vij of reaction i with respect

to the species j is subject to perturbations. Then we have

∆ = em
i ∆ije

n
j

T
, (16)

with the uncertainty ∆ij ∈ R, where em
i ∈ R

m (en
j ∈ R

n)

is the unit vector in the i–th (j–th) coordinate direction. The

perturbed Jacobian is then given by

Ã(∆) = A + S diag(v0)e
m
i ∆ije

n
j

T(diag x0)
−1. (17)

Denote B = S diag(v0)e
m
i and C = en

j
T(diag x0)

−1. Define

the transfer function

G(jω) = C(jωIn − A)−1B. (18)
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For the robustness radius we obtain [9]

R =

(

sup
ω

µ∆(G(jω))

)−1

=

(

sup
ω∈RG

|G(jω)|

)−1

, (19)

where

RG = {ω ∈ R : Im(G(jω)) = −ωC(ω2I + A2)−1B = 0}

is the realness locus of G(jω).
The remaining task is now to construct a minimum–norm

non-robust perturbation ∆∗
ij , for which the Jacobian Ã(∆)

has an eigenvalue on the imaginary axis. To this end, let

ω∗ = arg maxω∈RG
|G(jω)|. A minimum–norm non-robust

scalar perturbation is then given by

∆∗
ij =

(

G(jω∗)
)−1

. (20)

C. Vector perturbations

We can distinguish two perturbation cases which both lead

to a vector uncertainty. In the first case, all elements of the

perturbation matrix ∆ apart from one column are equal to

zero. Biochemically, this corresponds to a simultaneous per-

turbation of the influence of one species on several reactions.

In the second case, all elements of ∆ apart from one row

are equal to zero, which corresponds to a perturbation of the

influence of several species on one reaction. Both cases are

of interest for biochemical networks, because medical drug

development currently focuses on tackling a single target to

achieve a medical effect [10]. Such targets may either be a

single molecular species or a single reaction, corresponding

to the two vector perturbation cases.

Let us first consider the case where the influence of several

species on a single reaction is subject to perturbations.

Denote the index of the perturbed reaction as i and the

indices of the affected species as j1, . . . , jnj
. Define em

i , en
j

as in Section III-B and let

Ex = (en
j1

, . . . , en
jnj

).

The perturbation matrix can then be written as

∆ = em
i ∆i•E

T

x ,

with the vector uncertainty ∆i• ∈ R
1×nj . Then the perturbed

Jacobian is given by

Ã(∆) = A + S diag(v0)e
m
i ∆i•E

T

x (diag x0)
−1. (21)

1) Computation of the robustness radius: Define the

transfer function

G(jω) = ET

x (diag x0)
−1(jωIn − A)−1S diag(v0)e

m
i .

(22)

The transfer function G is split into its real and imaginary

part via

G(jω) = X(ω) + jY (ω),

where X(ω), Y (ω) ∈ R
nj .

The robustness radius is computed as [9, Th. 5.3.16]

R =
(

sup
ω

distp(X(ω), RY (ω))
)−1

, (23)

where
distp(X, RY ) = min

α∈R

‖X − αY ‖p

is the distance of X to the linear subspace with basis Y ,

measured in the p–norm. If Y = 0, then distp(X, RY ) =
‖X‖p. For the 2–norm, we have the explicit formula

dist2(X, RY ) =
(

‖X‖2

2 −
〈X, Y 〉2

‖Y ‖2
2

)
1
2

.

For the 1– and ∞–norms, the distance is obtained by solving

a linear program:

dist1(X, RY ) = min
α∈R,t∈R

nj
+

1Tt s.t. − t ≤ X − αY ≤ t

dist∞(X, RY ) = min
α∈R,t∈R+

t s.t. − t1 ≤ X − αY ≤ t1,

where 1 ∈ R
nj is a vector with all elements equal to 1, and

the inequalities are to be taken element-wise.

Note that in the computation of distp, we have to use the

dual of the norm which we use to measure the uncertainty

∆i•. So to compute the robustness radius for ∆i• measured

in the 1–norm, dist∞ should be used, and vice versa. The

2–norm is self-dual.

2) Construction of non-robust perturbations: At a given

frequency ω∗ ∈ R, a non-robust perturbation is characterised

by the condition

det(I − ∆i•G(jω∗)) = 0, (24)

which results in an eigenvalue at jω∗ for the perturbed

system.

In the vector case, the product ∆i•G(jω∗) is scalar. Thus

condition (24) is equivalent to 1 = ∆i•G(jω∗) or

∆i•X(ω∗) = 1

∆i•Y (ω∗) = 0.
(25)

Now if R < ∞, choose ω∗ such that µ∆(ω∗) = R−1 > 0.

By construction, X(ω∗) 6= 0 and X(ω∗) 6= αY (ω∗) for

any α ∈ R. Thus (25) is guaranteed to have a solution,

which however will not be unique in general. We are

typically interested in obtaining a solution of minimum norm.

Depending on the norm that is used, different non-robust

perturbations are obtained. An efficient computation of non-

robust perturbations is possible with the 1-, 2-, and ∞-

norms. To keep the exposition concise, we give the results

for the 1-norm only. Using this norm is the biologically most

plausible choice, if perturbations on the different interactions

are assumed to act independently from each other.

For ease of notation, we write (25) as M∆T
i• = b in the

following. Let K be a matrix whose columns span the kernel

of M and κ = dimkernM . Then all solutions of M∆T
i• = b

are parametrised by ∆T
i• = ∆T

i•,0 +Kλ, with λ ∈ R
κ, where

∆i•,0 is any solution of M∆T
i• = b. For a solution ∆∗

i• of

minimum 1-norm, the parameter λ is taken from the solution

of the linear program

min
t∈R

nj
+

, λ∈Rκ

1Tt

s.t. t ≤ ∆T

i•,0 + Kλ ≤ t.
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In the case where he influence of a single species on

several reactions is subject to a perturbation, a column vector

uncertainty can be used to describe ∆. This is the dual to

the previous case, where we had the row vector uncertainty

∆i•. Up to this duality, the analysis of this case is equivalent

to the analysis of the row vector case.

The results of Sections III-B and III-C thus provide

efficient ways to compute a robustness measure for dy-

namical properties with respect to kinetic perturbations and

the associated non-robust perturbations. For the class of

GMA networks, these perturbations can be related to actual

parameter variations by the results of Section II-B.

IV. APPLICATION TO THE MAPK CASCADE

The Mitogen-Activated Protein Kinase (MAPK) cascade is

involved in a large number of eukaryotic signal transduction

pathways, controlling functions such as cell division, differ-

entiation and apoptosis and playing a key role in development

of cancer. It is also one of the most studied and modeled

intracellular signaling pathways [11]. One of the first models

[12] predicted an ultrasensitive response from stimuli to ac-

tivated MAPK. However, experimental evidence reveals that

the cascade in certain contexts displays a bistable response

[13] while in others the response to stimuli may be sustained

oscillations [14]. Subsequent models have embedded the

signaling cascade in positive [13] and negative feedback

loops [15] from response to stimuli, to reproduce bistabil-

ity and sustained oscillations, respectively. Markevich et al

[16] show, by including more detailed kinetic models, that

bistability can be predicted also in the absence of external

feedback. Based on extensive parameter searches, Qiao et

al. [2] show that even the original Huang-Ferrell model

can display bistability and sustained oscillations in some

parameter regions. Here we employ the robustness analysis

proposed above to determine if perturbations of existing

interactions, or addition of new interactions, in the nominal

Huang and Ferrell model can translate the ultrasensitive

response into bistable or oscillatory responses.

The Huang-Ferrell model involves 22 biochemical com-

ponents, but due to 7 moiety conservations only 15 in-

dependent states. The components interact through a total

of 30 reactions, described using mass action kinetics and

imposing a total of 61 direct binary interactions in the

network. A schematic of the network and the nominal input-

output response is shown in Figure 1. The nominal stimulus

considered here corresponds to E1tot = 3 · 10−6 µM.

For this example, we consider scalar perturbations only,

and compute the robustness radii R and corresponding non-

robust perturbations ∆∗ using (19) and (24), respectively.

Note that, under certain non-degeneracy conditions, a non-

robust perturbation imposes a bifurcation in the correspond-

ing nonlinear network. In particular, if the non-robust per-

turbation is at frequency ω∗ = 0 the network will undergo a

saddle-node bifurcation while for ω∗ 6= 0 the system will

undergo a Hopf bifurcation. Saddle-node bifurcations un-

derly bistability, while Hopf bifurcations result in sustained

oscillations. Table I shows some of the smallest non-robust
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Fig. 1. MAPK cascade. Schematic of phosphorylation cascade and steady-
state input-output response curve.

perturbations required to induce saddle-node (SN) and Hopf

(HB) bifurcations for perturbation of existing (αij 6= 0) as

well as non-existing binary interactions (αij = 0).

As can be seen from Table I, it is possible to induce bista-

bility as well sustained oscillations by perturbing a single

existing interaction, or by introducing one new interaction.

The smallest non-robust perturbation corresponds to adding

a feedback from the cascade output, activated MAPK, to

the first reaction in the cascade (reaction 4 in Table I)

and corresponds to the positive feedback loop proposed in

[13]. As can be seen from the table, a similar effect can

also be obtained by a shorter feedback path from activated

MAPK to the second or third level of the cascade (reactions

13 and 25, respectively). However, it is also interesting to

note that all the observed qualitative behaviors in MAPK

signaling cascades can be replicated by the Huang-Ferrell

model simply by tuning the kinetics of a single reaction. In

particular, modifying the kinetics of the decomposition of

KPase-MAPKPP complex can induce a saddle-node bifurca-

tion as well as a Hopf bifurcation. The input-output response

curve after perturbing this reaction with ∆30,15 = −0.91 is

shown in Figure 2. As can be seen, the perturbation results

in two saddle-node and two Hopf bifurcation points, imply-
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TABLE I

NON-ROBUST PERTURBATIONS FOR SCALAR KINETIC PERTURBATIONS

OF THE MAPK CASCADE.

Reaction Component αij ∆∗

ij ω
∗

30 KPase-MAPKPP 1 -0.91 0 (SN)

18 KKPase-MAPKKPP 1 -0.98 0 (SN)

1 MAPKPP 0 0.150 0 (SN)

4 MAPKPP 0 -0.149 0 (SN)

4 KPase 0 0.52 0 (SN)

13 MAPKPP 0 0.37 0 (SN)

25 MAPKPP 0 0.90 0 (SN)

30 KPase-MAPKPP 1 -0.79 0.24 (HB)

30 MAPKPP 0 -0.94 0.25 (HB)

The reaction numbers are: 30 – decomposition of KPase-MAPKPP, 18 –
decomposition of KKPase-MAPKKPP, 1 – first step in phosphorylation of
MAPKKK, 4 – first step in dephosphorylation of MAPKKKP, 13 – first
step in phosphorylation of MAPKKP, 25 – first step in phosphorylation of
MAPKP,
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1

E1
tot

 (input)

M
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P
K
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 (
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u
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u
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Fig. 2. MAPK cascade. Input-output response after a scalar non-robust
perturbation ∆30,15 = −0.91 of the reaction kinetics for decomposition
of KPase-MAPKPP complex. SN – saddle-node, HB – Hopf bifurcation.

ing that the perturbed systems displays a narrow range of

multistationarity as well as sustained oscillations. Increasing

the size of the perturbation will increase this region.

In conclusion, the analysis of the MAPK cascade does not

reveal any severe fragilities for the perturbation of existing

interactions, but shows that the qualitative predictions of the

Huang-Ferrell model can be changed by adding relatively

weak additional interactions to the network.

V. CONCLUSIONS

The paper introduces kinetic perturbations as new uncer-

tainty class for biochemical reaction networks. It is shown

that these perturbations are directly related to variations in

the reaction order for general mass action networks. The ad-

vantage of kinetic perturbations is that the robustness analysis

problem can be solved using the well developed theory of

linear robust control, and even admits exact solutions for

the robustness radius in the scalar and vector uncertainty

cases. The motivation for using kinetic perturbations is that

steady state concentration values and reaction fluxes are

often well characterized in biochemical networks, whereas

the exact reaction kinetics are much less known. In this

respect, an important application of robustness analysis with

kinetic perturbations will be model validation. It should also

be pointed out that our approach does not require an explicit

model of the network, apart from the problem of relating

kinetic perturbations to parameter variations. It is in fact

sufficient to know the steady state concentrations, reaction

fluxes, and Jacobian elements for the robustness analysis,

which can be inferred more easily from experiments than

explicit rate expressions [17].
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