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Abstract

Parameter perturbations in dynamical models of biochemical networks affect the qualitative dynamical behaviour observed
in the model. Since this qualitative behaviour is in many cases the key model output used to explain biological function,
the robustness analysis of the model’s behaviour with respect to parametric uncertainty is a crucial step in systems biology
research. In this paper, we develop a new method for robustness analysis of the dynamical behaviour. As a first step, we
provide a characterization of non-robust perturbations as a system of polynomial equalities and inequalities. In the second
step, we apply the Positivstellensatz and Handelman representation of polynomials to check for the non-existence of solutions
to this system, which can be relaxed to solving a linear program. Thereby, a solution to the linear program yields a robustness
certificate for the considered dynamical behaviour. With these robustness certificates, we propose an algorithm to compute a
lower robustness bound corresponding to a level of parametric uncertainty up to which no local bifurcations can occur. The
applicability of the proposed method to biochemical network models is illustrated by analysing the robustness of oscillations
in a model of the NF-κB signalling pathway. The results may be used to define a level of confidence in the observed model
behaviour under parametric uncertainty, making them valuable for evaluating dynamical models of biological networks.
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1 Introduction

A significant portion of systems biology research is
based on dynamical models of biochemical networks on
the cellular level. These models are mostly given in the
form of parametrised ordinary differential equations.
For many such networks, the qualitative dynamical be-
haviour, such as sustained oscillations or bistability, is
the key model output used to describe the biological
function of the network (see [1] for an overview of impor-
tant examples). In particular, the dynamical behaviour
around equilibrium points is frequently the most dis-
tinct aspect of the global dynamical properties for these
networks. A problem with parametrised models on the
cellular level is that parameter values are usually highly
uncertain, or may vary significantly subject to the envi-
ronment or cell type being considered. The fact that the
qualitative dynamical behaviour depends on the param-
eter values thus directly gives rise to the question of ro-
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bustness: how much uncertainty or perturbation in the
network’s parameters can be tolerated without affecting
the qualitative dynamical behaviour of the system?

Under parametric uncertainty, changes in the qualita-
tive dynamical behaviour around equilibrium points are
always related to the occurence of local bifurcations of
equilibrium points. Bifurcation analysis is therefore fre-
quently applied to biochemical reaction networks [3,9,5].
In particular, local bifurcations typically correspond to
emergence or loss of complex dynamical behaviour such
as sustained oscillations or bistability. In this framework,
the robustness analysis problem is to quantify the devi-
ations from nominal parameter values that the system
may tolerate without any local bifurcations occuring.
Such a robustness concept has been utilized in several
previous studies. Based on the work in [14], we define a
robustness measure as the maximal parameter variation
around a nominal parameter value p0 which does not af-
fect the qualitative dynamical behaviour of the system.
Bifurcation analysis with numerical continuation can in
fact be applied for robustness analysis if only one or two
parameters are assumed uncertain [15,14]. Yet, major
difficulties are that the bifurcation surface can usually
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not be computed explicitly in a high-dimensional pa-
rameter space, and that continuation methods may miss
parts of the bifurcation surface, even if only one or two
parameters are uncertain. To deal with multiparametric
uncertainty, it was suggested to use the structured sin-
gular value as analysis tool [14,10,19]. However, a signif-
icant problem with the approaches based on the struc-
tured singular value is that the uncertainty in the lo-
cation of the steady state due to parameter variations
usually cannot be taken into account directly.

Although robustness analysis is a classical topic in con-
trol engineering, it remains surprisingly challenging to
apply established methods to the analysis of biological
networks. This shortcoming of classical control methods
has several reasons. First, most methods have been de-
veloped for linear systems, whereas biological networks
are almost always non-linear. Second, if methods are ap-
plicable to non-linear systems, it is typically assumed
that the relevant steady state is at the origin and not
affected by perturbations. In addition, the typical ques-
tion in control engineering is the robustness of stabil-
ity, whereas in biochemical networks also the robustness
of complex dynamical behaviour, such as bistability or
sustained oscillations, is highly relevant. In fact, biologi-
cal function based on complex dynamical behaviour like
sustained oscillations or bistability is typically directly
related to instability of an equilibrium point [18,5].

The approach developed in this article overcomes the
outlined problems of classical robustness analysis meth-
ods and is directly applicable to typical models for bio-
chemical reaction networks. The proposed robustness
analysis method is an application of the feedback loop
breaking approach [21], which we introduced previously
in order to characterise parameter values leading to a Ja-
cobian with eigenvalues on the imaginary axis, i.e. eigen-
values at zero or conjugate imaginary. Based on the feed-
back loop breaking, we propose conditions for robustness
of stability or instability as well as a computational al-
gorithm to compute a lower bound on the corresponding
dynamical robustness radius. Thereby, the occurence of
local bifurcations is determined by the necessary condi-
tion that the system’s Jacobian, evaluated at a steady
state, has an eigenvalue on the imaginary axis. Impor-
tantly, the variation in the location of the steady state
that occurs upon variations in the parameters is explic-
itly accounted for by the proposed method.

The paper is structured as follows. In Section 2, we in-
troduce the considered model class and give the robust-
ness definition to be used in this paper. In Section 3,
we derive a mathematical characterisation of non-robust
perturbations, from which an efficient computational ro-
bustness algorithm is constructed. An application of this
algorithm to the analysis of oscillations in a specific sig-
nalling pathway model is presented in Section 4.

2 Model class and robustness definition

2.1 Models of biochemical networks

As a first step, let us define the class of models that
is considered in this paper. Biochemical reaction net-
works are composed of two main elements: Biochemical
species, each of which represents an ensemble of chemi-
cally identical molecules in a specific compartment of the
cell, and chemical reactions, which are processes trans-
forming one group of species into another one.

The structure of a biochemical reaction network is char-
acterised completely by the list of involved species, de-
noted as X1, X2 . . . , Xn, and the list of reactions, de-
noted as

n∑
i=1

S
(s)
ij Xi →

n∑
i=1

S
(p)
ij Xi, j = 1, . . . , r, (1)

where r is the number of reactions in the network, and
the factors S(s)

ij ∈ N0 and S
(p)
ij ∈ N0 are the stoichio-

metric coefficients of the substrate and product species,
respectively [8].

The structural information of the reaction network is
usually subsumed in the stoichiometric matrix, given by

S =
(
S

(p)
ij − S(s)

ij

)
i=1,...,n, j=1,...,r

∈ Rn×r. (2)

The state vector of the system consists of the concentra-
tions of the involved chemical species and is denoted by

x = ([Xi])i=1,...,n ∈ Rn,

where [Xi] represents the concentration of species Xi.
The kinetic information for the reaction network is given
by reaction rate functions, which depend on the state
x ∈ Rn and the kinetic parameters p ∈ P0. Thereby, the
set

P0 ⊂ Rq (3)
is the set of admissible parameter values. The reaction
rates are given by the vector

v(x, p) = (vj(x, p))j=1,...,r ∈ Rr,

where vj(x, p) is the rate of the j–th reaction in (1). Usu-
ally, reaction rate laws are polynomial or rational ex-
pressions in both kinetic parameters and state variables,
arising for example from the law of mass action or the
Michaelis-Menten mechanism [1].

Independently of the chosen reaction rate mechanisms,
a model for the dynamics of the reaction network is ob-
tained by mass balancing. The dynamics are described
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by an ordinary differential equation given as

ẋ = Sv(x, p). (4)

A crucial assumption in the paper is that the Jacobian
S ∂v∂x (x, p) of (4) does not have eigenvalues on the imag-
inary axis at equilibria of (4) for nominal parameters.
However, conservation relations, which are commonly
present in biochemical networks, structurally lead to
eigenvalues at zero [7]. To remove these eigenvalues, the
model (4) can always be reduced to an equivalent system
of differential equations where these zero eigenvalues are
not present [7].

2.2 Robustness definition

The proposed concept for robustness of dynamical prop-
erties is formalised in the following definitions. We as-
sume throughout that all steady states are hyperbolic for
nominal parameters p0, i.e. none of the nominal steady
states yields eigenvalues of the system’s Jacobian on the
imaginary axis. Furthermore, we assume that the state
of the system (4) is restricted to a known compact set
X0 ⊂ Rn. For most biochemical networks, such bounds
can be derived either from conservation relations, or by
exploiting positive invariance of a sufficiently large com-
pact set in the state space.

As discussed in the introduction, the notion of robust-
ness considered in this paper corresponds to the non-
occurence of local bifurcations of steady states under pa-
rameter variations. With this notion, one can define the
set of robust parameters P∗(p0) as the largest connected
set within the set of admissible parameters P0 ⊂ Rq
which contains the nominal parameter values p0 and for
which there does not exist a p̄ ∈ P∗(p0) and a corre-
sponding steady state x̄ ∈ X0, with Sv(x̄, p̄) = 0, such
that the Jacobian S ∂v∂x (x̄, p̄) has eigenvalues on the imag-
inary axis, i.e. at zero or conjugate imaginary. With
knowledge of P∗(p0), one could decide whether the sys-
tem is robust against a given parametric perturbation
or not. In most cases, it will however not be possible
to compute the robust parameter set P∗ explicitly, as
it would require to compute the bifurcation surfaces of
the system which delimit this set. Also, in many cases
the exact global shape of P∗ is not even relevant for ro-
bustness analysis. For robustness issues, it is more in-
formative how large a compact region of regular shape
(like a hyperrectangle or -ellipsoid) around the nominal
parameters can be, while still being contained in P∗.

To develop a precise definition from this perspective, let
us consider the hyperrectangle

Pr(ψ, p0) =
{
p ∈ P0 | 1

ψ
≤ pj
p0,j
≤ ψ, j = 1, . . . , q

}
.

(5)

P0

bifurcation surface

P∗(p0)

Pr(ψ∗, p0)

p0

Fig. 1. Illustration of the considered robustness regions. The
irregular shaped region is the set of robust parameters, which
is delimited by bifurcation surfaces, while the rectangle cen-
tered at p0 is Pr(ψ∗, p0). Perturbing parameters by a factor
of ψ∗ or more from p0 may be non-robust by leaving the
rectangle through the lower left corner.

of all parameter values within a factor variation of at
most ψ from p0. The dynamical robustness radius ψ∗(p0)
will be defined by the supremum of the logarithmic ra-
dius ψ of all such hyperrectangles in which no param-
eter values yield steady states where the Jacobian has
eigenvalues on the imaginary axis. Thus, if the dynam-
ical robustness radius is finite, it is equal to the mini-
mal factor by which parameter values have to be varied
from p0 in order to leave the robust parameter set and
to induce a local bifurcation of steady states. Note that
we have used a hyperrectangle for Pr(ψ, p0) mainly for
convenience and ease of interpretation, in principle any
compact polytope could have been used for the analysis
developed in this paper. The precise robustness defini-
tion then is as follows.

Definition 1 The dynamical robustness radius ψ∗ ∈
(1,∞] is defined as

ψ∗(p0) = sup
{
ψ ∈ R | ∀p ∈ Pr(ψ, p0)∀x ∈ X0 :

Sv(x, p) = 0⇒ σ
(
S
∂v

∂x
(x, p)

) ∩ jR = ∅
}
,

(6)

where σ(A) is the spectrum of the matrix A.

The robustness definition is illustrated in Figure 1. In the
following section, the goal is to compute a lower bound
ψ̂∗ ≤ ψ∗ on the dynamical robustness radius. By Defi-
nition 1, knowledge of a lower bound allows to guaran-
tee that the system does not undergo local bifurcations
of steady states for parameter variations up to a factor
of ψ̂∗. Upper bounds on ψ∗ can be found by bifurcation
analysis, for example via continuation methods [12]. Us-
ing the feedback loop breaking approach also discussed

3



below, an efficient bifurcation search can be done in bio-
chemical networks with a high-dimensional parameter
space [21].

3 Robustness analysis method

3.1 The feedback loop breaking approach

For the analysis of dynamical behaviour of biological
feedback systems, we have previously introduced the
feedback loop breaking approach [21], where properties of
the original system are characterised by studying an ap-
propriately constructed input–output system. The orig-
inal system is thereby interpreted as the closed loop
description of the artificially constructed input–output
system.

To simplify the notation, let us rewrite the right hand
side of the system (4) as Sv(x, p) = F (x, p). Thus, the
system to be considered is given by

ẋ = F (x, p), (7)

with x ∈ X0 ⊂ Rn, p ∈ P0 ⊂ Rq and F : Rn ×Rq → Rn
a smooth vector field. To deal with steady states for
uncertain parameter values, we introduce the notation
of a state–parameter pair χ = (x, p) ∈ Rn ×Rq. We call
χ a steady state–parameter pair if the corresponding x
and p satisfy the equation

F (x, p) = 0. (8)

Also define the set of steady state–parameter pairs

M = {χ = (x, p) ∈ X0 × P0 | F (χ) = 0}. (9)

Definition 2 ([21]) A feedback loop breaking for the
system (7) is a tuple (f, h), where f : Rn×R×Rq → Rn
is a smooth vector field and h : Rn → R is a smooth
function, such that

F (x, p) = f(x, h(x), p). (10)

The corresponding open loop system is then given by

ẋ = f(x, u, p)
y = h(x),

(11)

and the closed loop system (7) is recovered by setting
u = y. Importantly, there is a direct relation between
steady states in the closed and the open loop system:
for a steady state–parameter pair (x0, p) of the closed
loop system (7), setting the input u = h(x0) in the open
loop system (11) leads to (x0, p) being a steady state–
parameter pair of the open loop system (11).

3.2 Characterisation of critical points via the loop
transfer function

The feedback loop breaking introduced in the previous
section is a useful tool to characterise steady state–
parameter pairs for which the system’s Jacobian has
eigenvalues on the imaginary axis, and where thus
changes in the qualitative dynamical behaviour should
be expected. In the following, let us denote the Jacobian
of the closed loop system (7) by

A(χ) =
∂F

∂x
(χ). (12)

Definition 3 The steady state–parameter pair χc is
called a critical point, if the Jacobian A(χc) has an
eigenvalue on the imaginary axis, i.e. a zero eigenvalue
or a pair of conjugate imaginary eigenvalues.

In the neighbourhood of the steady state–parameter pair
χ = (x0, p) ∈M, the open loop system (11) has a linear
approximation given by the state space representation
(Ao(χ), Bo(χ), Co(χ)), with Ao(χ) = ∂f

∂x (x0, h(x0), p),
Bo(χ) = ∂f

∂u (x0, h(x0), p), and Co(χ) = ∂h
∂x (x0). The lin-

earised open loop system can also be described by its
transfer function, which is defined as

G(χ, s) = Co(χ) (sIn −Ao(χ))−1
Bo(χ) (13)

with the complex variable s ∈ C. The following lemma,
adopted from [21], is a tool to characterise eigenvalues of
the closed loop Jacobian A(χ) by properties of the open
loop system (11), specifically the transfer function G.

Lemma 4 ([21]) Assume that s0 ∈ C is not an eigen-
value of Ao(χ). Then s0 is an eigenvalue of A(χ), if and
only if

G(χ, s0) = 1. (14)

In the following, Lemma 4 is used with s0 on the imagi-
nary axis to characterise critical points χc with the con-
dition (14). To this end, the transfer function G is rep-
resented as a complex rational function with real coeffi-
cients

G(χ, s) =
Q(χ, s)
R(χ, s)

, (15)

where Q(χ, s), R(χ, s) are multi-variate polynomials in
χ and s. The following result then characterises critical
steady state–parameter pairs.

Theorem 5 Assume that the open loop Jacobian Ao(χ)
does not have an eigenvalue on the imaginary axis for
any χ ∈M. Then the following two conditions are equiv-
alent.

(i) There exists a critical point χc ∈M.
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(ii) The system of equations

Q(χ, jω) = R(χ, jω) (16a)
F (χ) = 0 (16b)

in the variables χ ∈ Rn+q and ω ∈ R has a solution
with χ ∈ X0 × P0.

PROOF. By assumption, there does not exist ω ∈ R
and χ ∈M such that jω is an eigenvalue of Ao(χ).

(i)⇒ (ii): Let jωc be an imaginary eigenvalue of A(χc).
By Lemma 4, χc and ωc solve (16).

(ii)⇒ (i): Letχ andω be a solution of (16). In particular,
by (9), we have χ ∈ M. By Lemma 4, χ is a critical
point, with jω being an eigenvalue of A(χ).

The assumption that Ao(χ) does not have an eigenvalue
on the imaginary axis represents the idea of feedback
loop breaking, that the feedback loop which is responsi-
ble for the considered change in the dynamical behaviour
is removed in the open loop system. From a control en-
gineering perspective, this assumption assures that no
pole–zero cancellations of eigenvalues on the imaginary
axis occur in the transfer function G(χ, s). The assump-
tion on Ao(χ) can often be satisfied by structural prop-
erties. For instance, if the open loop system does not
have a feedback circuit, the eigenvalues can directly be
read from the Jacobian. In this case, it is typically easy
to check whether zero or conjugate imaginary eigenval-
ues are possible for p ∈ P0 and x ∈ X0.

3.3 Robustness certificates from the Positivstellensatz

In this section, we develop an approach to test whether
the dynamical behaviour of the system (4) is robust with
respect to uncertain parameters inside a given region
P ⊂ Rq. From Theorem 5, this is equivalent to check-
ing infeasibility of (16). Observe that, for reaction rates
v(x, p) which are rational in state variables and param-
eters, (16) is a system of polynomial equations. Thus, in
order to obtain a robustness certificate, we have to as-
sert that the system of polynomial equations (16) does
not have a solution χ with χ ∈ X0 × P. A useful re-
sult from real algebraic geometry in this context is the
Positivstellensatz [2], which provides sufficient and nec-
essary conditions for the non-existence of solutions to a
system of polynomial equalities and inequalities.

First, we need to introduce some notation of algebraic ge-
ometry. Let R[ξ] be the ring of polynomials in the vector
variable ξ ∈ Rm over the field of real numbers. The ideal

generated by a set of polynomials Y = {Y1, . . . , YN} ⊂
R[ξ] is defined as

I(Y1, . . . , YN ) =
{ N∑
i=1

TiYi | Ti ∈ R[ξ]
}
. (17)

The cone generated by Y is denoted by C(Y1, . . . , YN )
and defined by the properties

(i) Yi ∈ C(Y1, . . . , YN ), i = 1, . . . , N ,
(ii) T ∈ R[ξ]⇒ T 2 ∈ C(Y1, . . . , YN ),

(iii) Y ∈ C(Y1, . . . , YN ), Ȳ ∈ C(Y1, . . . , YN )⇒ Y + Ȳ ∈
C(Y1, . . . , YN ), Y Ȳ ∈ C(Y1, . . . , YN ).

Theorem 6 (Positivstellensatz, [2]) Consider a
system of polynomial (in-)equalities given by

Yi(ξ) = 0, i = 1, . . . , N
Zj(ξ) ≥ 0, j = 1, . . . ,M,

(18)

with ξ ∈ Rm. System (18) does not have a solution in
Rm, if and only if there exist Y ∈ I(Y1, . . . , YN ) and
Z ∈ C(Z1, . . . , ZM ) such that

Y + Z + 1 = 0. (19)

In the recent literature, the Positivstellensatz has been
combined with sum of squares relaxations to obtain com-
putationally efficient proofs for the infeasibility of in-
equality systems of the form (18), based on semidefinite
programming [17]. However, the sum of squares relax-
ation typically leads to very large semidefinite programs,
which may pose computational problems even for the ef-
ficient solvers which are available. To avoid this compu-
tational issue, we follow an alternative approach where
the problem reduces to the solution of a linear program,
for which solvers are more efficient than for semidefinite
programs. The basic tool in the proposed approach is
the Handelman representation theorem [6]. This theo-
rem makes use of so-called Handelman monomials Hd.
These are constructed from the inequality constraints Z
as

Hd(ξ) =
M∏
j=1

Zj(ξ)dj , (20)

where d ∈ NM0 is the vectorial degree of the Handelman
monomial Hd. The Handelman representation theorem
is given in the following statement.

Theorem 7 ([6]) Let K ⊂ Rm be a compact polytope
defined by the equations

Zj(ξ) ≥ 0, j = 1, . . . ,M, (21)

with ξ ∈ Rm and Zj : Rm → R affine functions. The
polynomial Y : Rm → R is non-negative on K, if and
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only if Y can be represented as

Y =
∑
d∈NM

0

cH,dHd, (22)

with non-negative coefficients cH,d.

Example 8 Consider the polynomial Y (x) = −2x2 +
7x − 5 in the variable x ∈ R. The polynomial is non-
negative on the domain 1 ≤ x ≤ 2. This domain is
represented by the constraints Z1(x) = x − 1 ≥ 0 and
Z2(x) = 2 − x ≥ 0. Using an ansatz with Handelman
monomials up to degree 2, (22) can be solved for the coef-
ficients cH,d by equating coefficients. In this way, we find
a representation of Y with the two Handelman monomi-
als H(1,0)(x) = x − 1 and H(1,1)(x) = (x − 1)(2 − x)
with coefficients cH,(1,0) = 1 and cH,(1,1) = 2 as Y (x) =
−2x2 + 7x− 5 = 1 · (x− 1) + 2 · (x− 1)(2− x).

The original result by [6] gives a necessary and suf-
ficient condition for positivity of a single polynomial
Y on a compact polytope. A serious restriction com-
pared to the Positivstellensatz is that the result con-
cerns positivity of a single polynomial only. However, in
the present problem, it is necessary to guarantee non-
existence of solutions for a set of polynomial equations
within a polytope. The following result combines the
Positivstellensatz with the Handelman representation
theorem to achieve a statement suitable for this purpose.

Theorem 9 Let K ⊂ Rm be a compact polytope defined
as in Theorem 7. Then the following two conditions are
equivalent.

(i) The system of equations

Yi(ξ) = 0, i = 1, . . . , N (23)

with ξ ∈ Rm and polynomials Yi ∈ R[ξ] does not
have a solution in K.

(ii) There exist polynomials Ti ∈ R[ξ], i = 1, . . . , N and
non-negative coefficients cH,d such that the polyno-
mial

Y =
N∑
i=1

TiYi − 1 (24)

can be represented as

Y =
∑
d∈NM

0

cH,dHd. (25)

PROOF. (i) ⇒ (ii). By the Positivstellensatz,
there exist polynomials Ỹ ∈ I(Y1, . . . , YN ) and
Z ∈ C(Z1, . . . , ZM ) such that Ỹ + Z + 1 = 0. By
Z ≥ 0 on K, we have that −Ỹ − 1 ≥ 0 on K.

Since Ỹ ∈ I(Y1, . . . , YN ), it can be represented as
Ỹ = −∑N

i=1 TiYi with Ti ∈ R[ξ]. Thus, there exist Ti,
i = 1, . . . , N such that the polynomial Y = −Ỹ − 1 as
defined in (24) is non-negative on K. The result (25)
then follows from Theorem 7.

(ii) ⇒ (i). Note that the Handelman monomials sat-
isfy Hd ∈ C(Z1, . . . , ZM ). Let Ỹ =

∑N
i=1(−Ti)Yi ∈

I(Y1, . . . , YN ) and Z̃ =
∑
d∈NM

0
cH,dHd ∈ C(Z1, . . . , ZM ).

From (24) and (25), we have Ỹ + Z̃+1 = −∑N
i=1 TiYi+∑

d∈NM
0
cH,dHd+ 1 = 0. Thus, by the Positivstellensatz,

(23) does not have a solution on K.

Example 10 Consider the system of equations in R2

7 + 3x1 − 4x2 = 0
x2 − x1 − 1 = 0.

(26)

Using Theorem 9, we want to establish that (26) does
not have a solution in the set K = {x ∈ R2 | 0 ≤ xi ≤
2, i = 1, 2}. Similar as in Example 8, we can use a (in
this case affine) ansatz for the multipliers Ti, and, with
Handelman monomials up to degree 2, equate coefficients
in (24) and (25) in order to determine the multipliers
and the Handelman coefficients. For the given example
(26), we find the multipliers T1 = 1 and T2 = x2, yielding
the polynomial

Y = 7 + 3x1 − 4x2 + x2(x2 − x1 − 1)− 1,

according to (24), with the Handelman representation

Y = x1 + x1(2− x2) + (2− x2) + (2− x2)2. (27)

In this case, all Handelman coefficients are equal to one.
The Handelman representation shows that (26) does not
have a solution in K.

A relaxed result for which only the conclusion (ii)⇒ (i)
in Theorem 9 is valid can be obtained by restricting the
degree of the multipliers Ti. With this relaxation, a finite
parametrisation of the problem is achieved, where the
coefficients of the polynomials Ti are free parameters and
the coefficients cH,d in (25) are non-negatively constraint
parameters. The procedure to compute an infeasibility
certificate, i.e. specific multipliers Ti such that condition
(ii) is satisfied, then reduces to the solution of a linear
program and is outlined as follows.

(i) Construct an ansatz for the multiplier polynomials
Ti, i = 1, . . . , N , according to

Ti(ξ) =
∑
d∈Di

c
(i)
T,d

m∏
i=1

ξdi
i , (28)
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where Di ⊂ Nm0 contains all vectorial degrees to be
used in the multiplier Ti and c(i)T,d ∈ R, i = 1, . . . , N ,
d ∈ Di, are free parameters to be chosen later. With
the multipliers Ti, construct the polynomial Y ac-
cording to (24).

(ii) Construct all Handelman monomials Hd(ξ) of the
form (20), for all d ∈ NM0 such that the vectorial
degrees of theHd do not exceed the vectorial degree
of Y .

(iii) Make an ansatz for the Handelman polynomial

YH =
∑

d≤dmax

cH,dHd, (29)

where dmax ∈ NM0 is the maximal vectorial de-
gree of YH , and the cH,d ∈ R, d ≤ dmax, are
non-negatively constrained parameters to be de-
termined in the next step.

(iv) Check whether the linear program

find c(i)T,d i = 1, . . . , N, d ∈ Di
cH,d d ≤ dmax

s.t. coeffξ(Y ) = coeffξ(YH)
cH,d ≥ 0

(30)

is feasible or not, where coeffξ(Y ) denotes the co-
efficient vector of the polynomial Y with respect to
monomials in ξ.

The above procedure may be used to compute robust-
ness certificates for the system (7), in the sense that
one can certify the non-existence of solutions for (16)
and thus non-existence of critical points. To this end,
choose K in Theorem 9 as K = X0×P× [0, ωmax], where
ωmax > 0 is an upper bound on the imaginary eigen-
values to be considered. Moreover, in Theorem 9, set
ξ = (χ, ω) ∈ Rn+q+1, and take the equality constraints
Yi, i = 1, . . . , N from (16). The resulting robustness cer-
tificate is given in the following result.

Corollary 11 If the linear program (30), constructed
for the equations (16) with affine constraints ξ = (χ, ω) ∈
X0 × P × [0, ωmax], has a feasible solution, then there
does not exist a critical point χc ∈M∩X0×P where the
Jacobian A(χc) has an eigenvalue jω with |ω| ≤ ωmax.

Corollary 11 provides a Positivstellensatz robustness
certificate for the system (7) under the parametric un-
certainty p ∈ P, in the sense that any feasible solution
to the corresponding linear program proves that no lo-
cal bifurcations of equilibria can occur for any p ∈ P, at
least considering eigenvalues with imaginary parts up
to ωmax.

3.4 Robustness analysis algorithm

Next, we discuss the application of the robustness cer-
tificate provided in the previous section to the compu-
tation of a lower bound ψ̂∗ on the robustness radius ψ∗.
The proposed algorithm is a bisection on the logarithmic
radius ψ of the parameter uncertainty region Pr(ψ, p0),
using the robustness certificate according to Corollary 11
in each step to decide whether the estimate of the ro-
bustness radius should be increased or decreased. The
robustness analysis algorithm is implemented according
to the following steps.

(i) Initialisation. Set the initial estimate for the lower
bound on the robustness radius:ψest = 2. Set initial
bounds for ψ̂∗: ψlo = 1, and ψhi to some sufficiently
large number. Define a termination tolerance tol.

(ii) Bisection step. Try to obtain a robustness certificate
according to Corollary 11 for P = Pr(ψest, p0).
(a) If successful: ψlo := ψest.
(b) Otherwise: ψhi := ψest.
Bisect for next step: ψest := 1

2 (ψhi + ψlo).
(iii) Termination criterion. If (ψhi−ψlo) ≤ tol, proceed

to step (iv). Otherwise return to step (ii).
(iv) Output. Return the lower bound on the robustness

radius
ψ̂∗ := ψlo. (31)

The lower bound ψ̂∗ on the robustness radius ψ∗ ob-
tained in the proposed algorithm certifies that the set
X0 × Pr(ψ̂∗, p0) does not contain critical points of the
system (7). It thereby provides a certified level of uncer-
tainty in the parameter values, up to which local bifur-
cations of equilibria cannot occur in the system (7).

The computational cost of the method is basically caused
by two factors: first the construction of the Handel-
man monomials Hd(ξ) and the computation of the co-
efficients of the Handelman polynomial YH(ξ) with re-
spect to ξ, which is done once in the algorithm, and
second the solution of the resulting linear program in
each step of the bisection algorithm. For increasing net-
work complexity, the computational cost grows quickly
due to the fast increase of required Handelman polyno-
mials with the number of affine constraints M and the
polynomial degree of the equality constraints (23). To
deal with medium to large scale biochemical networks,
it will become necessary to improve the computational
efficiency, which is possible via several approaches. For
example, the polynomial degree of (23) is expected to
grow mainly in the frequency variable ω, while for the
other variables, i.e. state variables and uncertain param-
eters, relatively low degrees are expected even for large
scale networks. Thus, simplifications based on structural
features have the potential to significantly reduce the
number of polynomial coefficients which need to be con-
sidered, as was previously suggested for sum-of-squares
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Fig. 2. Reaction scheme for the NF-κB pathway model ac-
cording to [11].

problems [16]. Furthermore, the construction of the Han-
delman monomials and corresponding polynomial co-
efficients could easily be parallelized, thus improving
computational efficiency on modern computing architec-
tures. Despite these possibilities, the combinatorial in-
crease in computational cost may prohibit the applica-
tion to large scale networks. Yet, it is feasible to apply
the proposed algorithm to biologically relevant models
of small to medium scale networks, as the following ex-
ample illustrates.

4 Oscillations in a NF-κB pathway model

Recently, the TNF induced NF-κB signalling pathway
has attracted much attention in systems biology. This is
due to the fact that NF-κB is a central transcription fac-
tor involved in the inflammatory response of mammalian
cells and directly interacts with the apoptotic pathway
by upregulation of anti-apoptotic proteins [13]. There-
fore, the NF-κB pathway is highly relevant for under-
standing cancer or autoimmune diseases. We consider an
ODE model suggested in [11], which reproduces experi-
mentally observed oscillations. The robustness analysis
method developed in the previous section will be applied
to this model in order to investigate the robustness of
oscillations with respect to parameter variations.

The original model consists of seven chemical species and
a twelve reactions. A scheme of the model is depicted in
Figure 2. From a conservation relation for the amount of
NF-κB and quasi-stationarity assumptions on the com-
plex formation between NF-κB and its inhibitor I-κB,
a reduced order model with four state variables is de-
rived [11]. The four state variables correspond to species
concentrations according to the following list: x1 – free

Table 1
Nominal parameter values for the NF-κB model (32) [11].

kN,in = 5.4 min−1 kI,in = 0.018 min−1

kI,out = 0.012 min−1 kNI,out = 0.83 min−1

kf = 30 (µM min)−1 kb = 0.03 min−1

kt = 1.03 (µM min)−1 ktl = 0.24 min−1

α = 0.525 min−1 γm = 0.017 min−1

Ntot = 1µM

cytosolic I-κBα, x2 – I-κBα mRNA, x3 – total nuclear
I-κBα, x4 – free nuclear NF-κB. The reaction parame-
ters are given in Table 1. As a short-hand notation, the
additional dependent parameters

KI =
kb + α

kf

KN =
kb + kNI,out

kf

are introduced. The model is then given by the equations

ẋ1 = ktlx2 − α(Ntot − x4)x1

KI + x1
− kI,inx1 +

kI,outKNx3

KN + x4

ẋ2 = ktx
2
4 − γmx2

ẋ3 = kI,inx1 − kI,outKNx3

KN + x4
− kNI,outx3x4

KN + x4

ẋ4 =
kN,inKI(Ntot − x4)

KI + x1
− kNI,outx3x4

KN + x4
.

(32)

The robustness analysis method developed in the pre-
vious section is applied 1 to the reduced order NF-κB
pathway model (32), with parameter values as given in
Table 1. For nominal parameter values, there is an un-
stable equilibrium point and a stable limit cycle, giving
rise to periodic oscillations.

For the purpose of this example, let us assume that the
translation of the I-κBα gene and the activity of IKK
are uncertain, i.e. p = (kt, α). In the cell, these two pro-
cesses are highly suspectible to further influences that
have not been included in the model, and therefore the
robustness of the pathway with respect to uncertainties
therein is an important question. The question to be ad-
dressed is how much the two parameters kt and α may
be varied while maintaining instability of the equilib-
rium point with two right half plane eigenvalues. The
algorithm computes a lower bound on the robustness

1 The implementation of the presented example is
available for download as a Matlab script from
the website http://www.ist.uni-stuttgart.de/research/
sysbio/sw-fa-automatica-robustness .
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radius for instability of the equilibrium point by bisec-
tion on the parametric uncertainty factor ψ. In each bi-
section step, the algorithm tries to obtain an infeasibil-
ity certificate for the critical point condition (16), with
P(ψ, kt, α) = [ 1

ψkt, ψkt]× [ 1
ψα,ψα] ⊂ R2, where kt and

α are taken from the nominal parameter values in Ta-
ble 1. As loop breaking point, the influence of nuclear
NF-κB on the transcription of the I-κBα gene is used,
i.e. h(x) = x4 and the x2

4 term in ẋ2 is substituted by
u2. This influence is part of the negative feedback cir-
cuit responsible for oscillations in the NF-κB pathway
model, and therefore is a reasonable choice for the loop
breaking point.

In the computation of the robustness radius for the NF-
κB pathway model, it is crucial to get good bounds on
the set X0 of possible steady states to be considered for
any given parameter uncertainty. In this study, suitable
bounds are obtained by the steady state uncertainty
analysis previously described in [22]. Another critical
factor is the number of variables which need to be con-
sidered in the polynomial equations (16), as the com-
putational effort grows significantly with the number of
variables. For the NF-κB pathway model, a good way to
reduce the number of variables is to solve partially for
the equilibrium point of (32). In steady state, it holds
that

x2 = kt
x2

4

γm

x3 =
kI,inx1(KN + x4)

kI,outKN + kNI,outx4
.

Exploiting this relation, the critical point conditions (16)
involve only the five variables x1, x4, kt, α, and the fre-
quency ω. From (16), we obtain two steady state equa-
tions for x1 and x4, and two equations for the real and
imaginary part of (16a), thus N = 4.

The maximum degree of the critical point conditions (16)
for the NF-κB pathway model is four, resulting from the
degree four with respect to the frequency variable ω in
the characteristic polynomial of the fourth order system
(32). In the analysis, the degree sets Di for the multipli-
ers Ti are chosen such that all terms TiYi in the construc-
tion of Y have degree five with respect to any individual
variable. Considering (24), it is reasonable to choose the
ansatz for the multipliers such that all terms TiYi are of
the same degree. In this example, a degree of five, i.e. one
larger than the maximum degree of the considered equal-
ity constraints Yi, was the lowest degree for which a non-
trivial robustness region could be found. In the resulting
ansatz for the multipliers Ti, a total of 632 unknown co-
efficients c(i)T,d has to be used. With a lower and upper
bound on each individual variable, we have M = 10 in-
equality constraints. Constructing the Handelman poly-
nomial YH according to (29) up to the required degree re-
sults in 187787 Handelman monomials of the form (20).
Expanding the Handelman polynomial YH,d in monomi-
als based on the original five variables gives 2282 terms,

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

kt [1/(µM min)]

α
[1

/
m

in
]

Hopf bifurcation locus

Region of certified
robust instability

p0

Fig. 3. Region of guaranteed robustness and Hopf bifurcation
locus for the NF-κB pathway model (32) in the kt–α plane.
The Hopf bifurcation locus is computed with the bifurcation
analysis software auto [4], while the region with certified
non-existence of bifurcations is computed by the algorithm
developed in this paper.

with coefficients depending affinely on the 187787 un-
known parameters cH in the Handelman representation.
On a standard desktop computer (Intel(R) Core(TM)2
Duo CPU E4500 2.20GHz, 2GB RAM), constructing
these coefficients takes about 2 hours. In each iteration
of the bisection algorithm, a linear program with 632 free
parameters, 187787 non-negatively constrained param-
eters and 2282 equality constraints from the comparison
of coefficients has to be solved. To solve the linear pro-
gram, we use the Matlab toolbox SeDuMi [20], which
deals well with the sparsity of the equality constraints
and the large number of non-negatively constrained pa-
rameters. One call to the linear program solver requires
about 15 minutes of computation time on a standard
desktop computer (as above) for this example.

The lower bound on the dynamical robustness radius ob-
tained for the NF-κB pathway model is ψ̂∗ = 2.078 ≤
ψ∗, up to a tolerance of tol = 0.01 used as termination
criterion for the bisection. To find an upper bound, we
compute a Hopf bifurcation locus by numerical contin-
uation methods [12]. In this way, a Hopf bifurcation is
discovered at (kt, α)∗ = (0.495, 1.094), corresponding to
an upper bound of 2.084 ≥ ψ∗. Notice that the lower
bound computed with our method is exact within the
chosen tolerance. The results are also depicted in Fig-
ure 3. In conclusion, the NF-κB pathway as modelled
by [11] can tolerate an uncertainty in the considered pa-
rameters of more than a factor 2 without experiencing
a loss of sustained oscillations. The pathway is therefore
expected to maintain the biological function related to
the oscillations for a considerable amount of uncertainty
in the uncertain processes.
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5 Conclusions

For control engineers, checking robustness of instabil-
ity is an uncommon problem. Yet, in biochemical net-
works, this problem is of high relevance in the analysis
of complex dynamical behaviour such as sustained oscil-
lations or bistability. To deal with this type of problems,
we propose a feedback loop breaking approach to obtain
conditions for non-existence of local bifurcations under
a parametric uncertainty. The conditions are checked
computationally by constructing a Handelman repre-
sentation for a Positivstellensatz robustness certificate.
This construction is efficiently accomplished with linear
programming. Although theoretically such a certificate
does always exist, if the equations are infeasible, in prac-
tice the method is conservative due to limitations on the
polynomial degree. Yet, the approach is quite efficient,
and is, to the best of our knowledge, presently the only
method to check robust instability of non-linear systems
with respect to a generic parametric uncertainty.

We have also illustrated the application of the proposed
method by studying robustness of oscillations in a model
of the NF-κB signalling pathway. This example in par-
ticular shows that the proposed method is suitable for
the robustness analysis of dynamical behaviour in small
to medium size biochemical reaction networks.
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E. Bullinger. Steady state and (bi-)stability evaluation of
simple protease signalling networks. BioSystems, 90:591–601,
2007.

[6] D. Handelman. Representing polynomials by positive linear
functions on compact convex polyhedra. Pac. J. Math.,
132:35–62, 1988.

[7] R. Heinrich and S. Schuster. The Regulation of Cellular
Systems. Chapman & Hall, New York, 1996.

[8] D. J. Higham. Modeling and simulating chemical reactions.
SIAM Rev., 50(2):347–368, Jan 2008.

[9] J. Keener and J. Sneyd. Mathematical Physiology. Springer,
New York, 2004.

[10] J. Kim, D. G. Bates, I. Postlethwaite, L. Ma, and P. A.
Iglesias. Robustness analysis of biochemical network models.
IEE Proc. Syst. Biol., 153(3):96–104, May 2006.

[11] S. Krishna, M. H. Jensen, and K. Sneppen. Minimal model of
spiky oscillations in NF-kappaB signaling. Proc. Natl. Acad.
Sci., 103(29):10840–45, Jul 2006.

[12] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory.
Springer-Verlag, New York, 1995.

[13] Q. Li and I. M. Verma. NF-kappaB regulation in the immune
system. Nat. Rev. Immunol., 2(10):725–734, Oct 2002.

[14] L. Ma and P. A. Iglesias. Quantifying robustness of
biochemical network models. BMC Bioinform., 3:38, 2002.

[15] M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri,
J. Doyle, and H. Kitano. Robustness as a measure of
plausibility in models of biochemical networks. J. Theor.
Biol., 216(1):19–30, May 2002.

[16] P. A. Parrilo. Exploiting structure in sum of squares
programs. In Proc. of the 42th IEEE Conf. on Dec. and
Control, Maui, Hawai, pages 4664–4669, 2003.

[17] P. A. Parrilo. Semidefinite programming relaxations for
semialgebraic problems. Math. Program., 96(2):293–320, May
2003.

[18] H. Schmidt and E. W. Jacobsen. Linear systems approach
to analysis of complex dynamic behaviours in biochemical
networks. IEE Proc. Syst. Biol., 1:149–158, 2004.

[19] J. E. Shoemaker and F. J. Doyle III. Identifying fragilities
in biochemical networks: Robust performance analysis of Fas
signaling-induced apoptosis. Biophys. J., 95:2610–23, Jun
2008.

[20] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for
optimization over symmetric cones. Optim. Meth. Softw.,
11(1):625–653, 1999.
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