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Abstract— Complex behavior in the dynamics of biochemical
reaction networks is commonly governed by bifurcations of
equilibria and limit cycles. In this tutorial, we discuss two
frequent types of bifurcations, the saddle-node and the Hopf
bifurcation, and their relation to bistability and oscillations in
biochemical networks, respectively. We also present examples
from molecular biology where the dynamical behavior of
specific networks is defined by these bifurcations.

I. INTRODUCTION

Most dynamical processes within living cells are based

on biochemical reactions. Networks of biochemical reactions

govern intracellular dynamics over various regimes, includ-

ing metabolism, signal transduction, and gene expression.

In signal transduction and gene regulation networks, the

biological functionality is often tightly connected to the

qualitative dynamical behavior of the network. Recent studies

have identified basic motifs contributing to a certain biolog-

ical process by displaying specific dynamical properties, for

example switching behavior or oscillations [1], [2].

The motifs as basic building blocks of intracellular net-

works are embedded in a larger intracellular context, and

also depend on intrinsic conditions. Accordingly, the math-

ematical models of the corresponding dynamics universally

contain several parameters, representing either extrinsic or

intrinsic conditions which are subject to environmental,

genetic, or other variety. In such parametrized models, the

dynamical properties are characterized by bifurcations, i.e.

variations in the qualitative behavior occuring under changes

in parameter values [3]. Thus, bifurcation analysis is an

important tool for understanding dynamical properties related

to biological functionality of biochemical networks.

The intention of this paper is to provide a tutorial about

the basic mechanisms behind biochemical switches and

oscillators from a bifurcation analysis perspective. Thereby,

we discuss specifically the saddle-node bifurcation and how

biochemical switches are based on this bifurcation type, as

well as the Hopf bifurcation and its relation to biochemical

oscillators.

The paper is structured as follows. The model classes to

be studied, namely biochemical and regulatory networks, are

presented in Section II. Section III describes the saddle-

node bifurcation and its relation to biochemical and genetic

switches. The Hopf bifurcation and its occurence in biochem-

ical oscillators is presented in Section IV.
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II. MODELS OF BIOCHEMICAL NETWORKS

A biochemical network model (BN) describes interactions

between different cellular components at a molecular level.

As these interactions are usually of chemical nature, such as

complex formation, degradation by proteases, or chemical

modification of proteins, BNs are often based on chemical

reaction kinetics. Dimerization of a protein P is for example

described by a reversible reaction 2P ⇌ P2. A convenient

representation of a set of chemical reactions with n species

and r reactions is given by the ordinary differential equation

(ODE) system

ẋ = Sv(x, µ), x ∈ R
n
+, µ ∈ R

q, S ∈ R
n×r, v ∈ R

r, (1)

where x is the concentration vector of all species in the reac-

tion system, and µ is a parameter vector. The stoichiometric

matrix S contains the number of molecules of each species

that enter the reactions. The reaction rates, which are usually

described by mass action kinetics, are collected in the flux

vector v.

Motivated by a huge amount of work on gene regulatory

networks that describe regulation of gene expression via

binding of transcription factors to the DNA, a model class

called regulatory network models (RN) has intensively been

investigated. Activation of transcription via binding of a

transcription factor T to a specific binding site B in the

promoter region of the regulated gene results in a complex

C which enables the polymerase P to initiate transcription,

and can for example be described by the reactions

T + B ⇋ C (2)

C + P + ribonucleotides → C + mRNA + P. (3)

Since this binding event happens on a much faster time scale

than gene expression, a quasi-steady state approximation

leads to a functional relation between the transcription rate of

the regulated gene and the transcription factor concentration,

described by a Michaelis-Menten or Hill-equation (for more

details see [1]). Formally, a RN is defined as

ẋ = f(x, µ), x ∈ R
n
+, µ ∈ R

q, f ∈ C1 (4)

with Jacobian matrix Jf (x) that has constant signs on its

off-diagonal elements, indicating activating or inhibiting reg-

ulation. Some BNs also fulfill these monotonicity conditions,

and methodology for RNs can as well be applied to them.

Graphical approaches for both model classes are surveyed

in [4]. A RN can be illustrated by its interaction graph

G(V,E), that is, a directed graph, with vertex set V corre-

sponding to species, and sign-labeled edges E. (Semi)paths

and (semi)circuits in this graph are defined in the usual way
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[5], and signs of those are given by the product of signs

of their edges. The interaction graphs will be the important

representation for our purposes. We furthermore assume that

the systems are stable in the sense that there exists a bounded

trapping region in the state space, i.e. a forward invariant

region that is eventually entered by all trajectories. This is

for example obtained by introducing first-order degradation

terms for each component.

The following analysis considers complex dynamic behav-

ior emerging from the generic codimension-1 bifurcations of

fixed points in BN and RN models, saddle-node and Hopf

bifurcations.

III. THE SADDLE-NODE BIFURCATION AND

BIOCHEMICAL SWITCHES

A. The saddle-node bifurcation

The saddle-node bifurcation (SNB) is a bifurcation where

two steady states of the system (1) collapse and thereby

disappear from the dynamics. The normal form of the SNB

is given by the scalar ODE

ẋ = µ − x2, (5)

where µ ∈ R is a variable parameter [3]. Solving for the

steady state of (5) yields

x̄ = ±√
µ. (6)

Thus the number of resulting steady states depends on the

value of the parameter µ: for µ < 0, there is no steady state,

for µ = 0, there is a single steady state x̄ = 0, and for

µ > 0, we obtain two steady states. Next, let us consider the

local stability of the individual steady states. For µ = 0, the

system’s equation is ẋ = −x2. Thus, the steady state x̄ = 0
is unstable, with trajectories diverging away from the steady

state for an initial condition x0 < 0. However, for an initial

condition x0 > 0, trajectories in fact converge towards the

steady state. In the case that µ > 0, we can study stability

of the steady states by considering the linear approximation

of (5),

ξ̇ = −2x̄ξ, (7)

where ξ = x − x̄ is the deviation from the steady state x̄.

Thus, the steady state x̄1 =
√

µ is exponentially stable,

while the second steady state x̄2 = −√
µ is unstable,

with diverging trajectories in both directions. The dynamical

behavior of the system (5) is illustrated with a bifurcation

diagram in Figure 1.

In higher-dimensional systems, the saddle-node bifurca-

tion takes place on a one-dimensional center manifold W c.

The dynamical behavior is illustrated in Figure 2. As in the

one-dimensional case, there is no steady state for µ < 0, and

for µ = 0 a steady state emerges, which then bifurcates into

a stable and an unstable steady state for µ > 0. Note that

in the two-dimensional case, for µ > 0, the stable steady

state is a node, and the unstable steady state is a saddle. For

µ = 0, the saddle and the node merge and then disappear

for µ < 0, hence the name of the bifurcation.

x

µ

Fig. 1. Bifurcation diagram for the normal form of the scalar saddle node
bifurcation (5).

µ < 0 µ = 0 µ > 0

Fig. 2. Bifurcation diagram for the saddle-node bifurcation in a two-
dimensional system. The bold line in the case µ = 0 is the center manifold
on which the bifurcation takes place.

B. Basic structure of genetic and biochemical switches

Next, let us consider how the saddle-node bifurcation is

related to switching in biological systems. A key feature of

biological switches is the occurence of at least two stable

steady states in the system (1), which can be identified

with two distinct operational modes of the corresponding

biological process. Thus, biological switches are character-

ized by the property of bistability, i.e. the coexistence of

two stable steady states [6]. In the generic case, where no

specific biological function is assigned to the switch, we just

refer to the two stable steady states as the on- and off-state

of the switch. In fact, the usual structure of a biological

switch is a system which may have three steady states: two

distinct stable nodes, and one saddle lying “between” the

stable steady states. More specifically, the saddle point is

located on the separatrix, i.e. the boundary of the regions of

attraction for the two stable steady states.

With the considered structure of the switch, the process of

switching from off to on corresponds to the occurence of a

saddle-node bifurcation of the off-state and the saddle point.

Thus, the on-state remains as the only stable steady state, and

the system will converge to this state. Conversely, switching

from on to off corresponds to a saddle-node bifurcation

of the on-state and the saddle point, and the system will

converge to the off-state in this case. We next discuss how

this mechanism is implemented in two common biochemical

network motifs which appear in biological switches.

1) Switches with a single element: The simplest network

structure giving rise to a biochemical or genetic switch is

an autoregulatory element, i.e. a biochemical entity that

reinforces its own activity. For a genetic switch, this entity is
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Fig. 3. Steady state illustration (A) and bifurcation diagram (B) for the
scalar switch (9).

typically a transcription factor which positively regulates its

own expression from the genome. In biochemical signalling

networks, a typical motif is a kinase that catalyzes its own

activation by phophorylation. In both cases, the motif can be

modelled by the differential equation

Ẋ = k0 +
VmX2

K2
m + X2

− kdX, (8)

where X ∈ R is the activity of the considered entity, and k0,

Vm, Km, and kd are positive parameters. Thereby, the first

term k0 corresponds to a basal production rate independent of

the activity of X , the second term VmX2

K2
m

+X2 to gene expression

via transcription and translation in a genetic switch, and

for example to phosphorylation in a biochemical signalling

switch. The third term kdX corresponds to a linear decay,

representing for example protein decay or dephosphorylation.

The system is rescaled by setting X = Kmx, where x is the

normalized activity of the considered entity, and introducing

the normalized time τ = Vm

Km

. The resulting normalized

system is given by

dx

dτ
= µ0 +

x2

1 + x2
− µ1x, (9)

where µ0 = k0

Vm

and µ1 = kdKm

Vm

are dimensionless

parameters.

The behavior of the system (9) in dependence of the

parameters µ0 and µ1 can be illustrated by plotting the

production terms and the degradation term over x, as in

Figure 3A. From Figure 3A, it is clear that varying the

parameter µ1 yields two saddle-node bifurcations, one at

µ
(1)
1 , the other at µ

(2)
1 . The dependence of the steady state

on the parameter µ1 is shown in the bifurcation diagram in

Figure 3B. For µ1 ≤ µ
(1)
1 , the only stable steady state is

the one where x̄ is high, thus the switch is said to be on.

On the other hand, for µ1 ≥ µ
(2)
1 , the only stable steady

state is with low x̄, and the switch is off in this case. For

µ
(1)
1 < µ < µ

(2)
1 , the system is bistable, and the state of the

switch depends on whether µ1 came into this interval from

below or above.

2) Switches with two elements: Switches with two ele-

ments are commonly based either on mutual repression, i.e.

each of the two elements represses the other’s activity, or

x

y
ẋ = 0

µ2 = 0

µ2 = 0.5
ẏ = 0

SNB

Fig. 4. Nullclines for the mutual repression switch for different values
of µ2. The saddle-node bifurcation is labelled with a square. Filled dots
indicate stable steady states, the contoured dot an unstable steady state.

on mutual activation, i.e. the elements activate each other,

similar to the autoregulatory motif discussed for the scalar

switch (8). Here, we discuss only the mutual repression

case. Let x and y denote the normalized concentrations or

activities of two biochemical entities X and Y. The mutual

repression is achieved by letting the production or activation

of X decrease with increasing Y, and vice versa. Moreover,

we assume that both entities are subject to a linear decay,

and that for each component there is an additional production

source independent of the other component’s activity. A

typical non-dimensionalized ODE model resulting from these

model assumptions is given by

ẋ =
4

1 + y2
− x + µ1

ẏ =
4

1 + x2
− y + µ2,

(10)

where µ1, µ2 > 0 are adjustable parameters representing

the independent production source. In the case where µ1 =
µ2 = 0, the system (10) is bistable, with the two stable

steady states corresponding to either high x and low y or

vice versa, as shown in Figure 4. The system can be forced

into the state with high y by increasing the parameter µ2: for

a critical value of µ2, the stable steady state with high x and

the unstable steady state merge and disappear in a saddle-

node bifurcation, as shown in Figure 4, and the system is

forced to the state with high y. Conversely, the system can

be forced to the state with high x by increasing µ1. In this

case, the state with high y and the unstable steady state would

disappear via a saddle-node bifurcation.

C. Examples of genetic and biochemical switches

Genetic and biochemical switches based on bistability

and the saddle-node bifurcation have emerged as a common

motif that living cells use to regulate their internal state.

The basic structures discussed in the previous section are

indeed frequently encountered in intracellular networks. Yet,

most actual switches are of larger complexity, owing to
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the need for several regulatory inputs, increased robustness

of bistability, or just the biochemical features required to

generate the sigmoidal shape of the curves in Figures 3A

and 4 [7]. Nevertheless, it is instructive to study a few typical

examples of intracellular switches within the framework of

the previous section.

A thoroughly studied example is the lac operon [8], which

is a genetic switch used by intestinal bacteria in order to

decide between the digestion of one of the two sugars lactose

and glucose. The switch is based on the protein LacI, which

represses transcription of the lac operon, encoding for lactose

metabolism proteins. However, LacI is also inhibited by

products of the lactose metabolism, yielding a switch based

on mutual repression [9].

The process of programmed cell death, also called apopto-

sis, is an example where a biochemical switch is embedded

within a larger network structure. Apoptosis is a mechanism

present in all mammalian cells, which is essential to remove

malfunctioning or unneeded cells from the organism in a

coordinated manner. It can be triggered by extracellular or

intracellular stimuli, and is essentially based on a mutual

activation switch within the so called caspase cascade [10].

The switching behavior in apoptosis can be analyzed in a

similar way as the switch with two elements discussed in

Section III-B [7].

IV. THE HOPF BIFURCATION AND

OSCILLATIONS

A. The Hopf bifurcation

Hopf bifurcations (HB) are the generic bifurcations for

the generation of limit cycles in nonlinear systems. In a HB,

a stable fixed point x̄ is destabilized via a transition of a

complex pair of eigenvalues of the Jacobian matrix J µ
f (x̄)

from the left to the right half plane, which goes along with

the emergence of a limit cycle. The normal form of a HB in

cartesian coordinates is given by
(

ẋ1

ẋ2

)

=

(

µ −ω

ω µ

) (

x1

x2

)

+ (x2
1 + x2

2)a

(

x1

x2

)

(11)

with parameter ω > 0. It has a fixed point at (x̄1, x̄2) = (0, 0)
with a complex conjugate pair of eigenvalues of the Jacobian

matrix J µ
f (x̄) given by

λ1,2 = µ ±
√

−ω2. (12)

A HB occurs at µc = 0, when the real parts of these eigen-

values change signs. It is convenient to transform equation

(11) into polar coordinates,

r2 = x2
1 + x2

2 x1 = r cos θ (13)

θ = arctan
(

x2

x1

)

x2 = r sin θ, (14)

which leads to

ṙ = µr + ar3 (15)

θ̇ = ω. (16)

In this form, the radial and angular coordinates are decoupled

and can be considered separately. Equation (16) describes

a counterclockwise rotation with constant angular velocity

ω. Considering ṙ(a, µ), we have to distinguish between two

different cases:

1) Supercritical HB for a < 0 (Fig. 5 top): It is easy

to verify that for µ < 0, ṙ has a single fixed point r̄ = 0,

which is globally stable. Thus system (11) has a globally

stable focus at the origin and exhibits damped oscillations.

The focus becomes unstable at µ = 0, and a globally stable

limit cycle with radius r0 =
√

−µ
a emerges. The system

shows sustained sinusoidal oscillations (Figure 5 top). A

general characteristic for supercritical HBs is the increase

of the oscillation’s amplitude and period near the HB with

orders O(µ1/2) and O(1), respectively.

2) Subcritical HB for a > 0 (Fig. 5 bottom): Similarly,

r0 = 0 is a fixed point of the system in any case. It is the

only limit set if µ > 0, and it is an unstable focus in this case.

The system shows oscillations with increasing amplitude.

The focus becomes stable for µ < 0, and an unstable limit

cycle with radius r0 =
√

−µ
a emerges, which is the border of

the basin of attraction of the stable focus. Depending on the

initial condition, the system exhibits damped oscillations or,

if r(0) > r0, it oscillates with increasing amplitude (Figure

5 bottom). Since the r3 term is destabilizing here, often

higher order terms stabilize the solution in real systems. For

example, adding a term r5 to equation (15) creates a second

limit cycle with large amplitude via a SNB of cycles at a

value µc < 0, which is stable.

Finally, we note that oscillations with constant angular

velocity and decoupling of both polar coordinates, i.e. sinu-

soidal oscillations, are a specialty of the normal form, and

generally things are more complex in this respect.

B. Biochemical oscillators in 2D

We start considering two-dimensional RNs, in which the

occurence of limit cycles goes along with typical courses of

nullclines. A negative circuit in the interaction graph with

at least two nodes is necessary for oscillations [11], [12],

since systems with graphs lacking negative circuits have a

monotone flow with respect to a partial ordering induced

by an orthant of the coordinate system (for more details

see [13], [14], [15] and references therein). This property

prevents in particular the existence of stable limit cycles

and hence oscillations. A single negative circuit is however

not sufficient to generate oscillations in two-dimensional

systems: Since the sign of the real parts of the eigenvalues in

J µ
f (x) are given by the sign of tr(J µ

f (x)), which is always

negative, the system cannot undergo a HB. One of the two

components must activate its own state, which leads to a

classification of two-dimensional biochemical oscillators into

activator-inhibitor oscillators (AIO) and substrate depletion

oscillators (SDO). These two groups are characterized by

the sign pattern of the Jacobian matrix J
µ
f (x) near the fixed

point x̄, or, equivalently, the interaction graph topology, and

the course of the nullclines in a neighborhood of x̄. The sign

138



Fig. 5. Bifurcation diagrams for super- and subcritical Hopf bifurcations.

patterns are given by [16]:

σAIO
(

J µ
f (x)

)

=

(

+ −
+ −

)

, σSDO
(

J µ
f (x)

)

=

(

+ +
− −

)

for the AIO and the SDO, respectively. Self-activation is,

similar to the SNB, usually described by a non-linear term

that saturates for high concentration values, such that the

linear degradation term dominates over the self-activation

(∂ẋ
∂x < 0) for large concentrations in x. This stabilizes the

system in the sense that forward trajectories are bounded and

leads to typical courses of nullclines for AIOs and SDOs

(Figures 6 and 7).

The existence of a stable limit cycle can be shown using

the Poincaré-Bendixson theorem (PBT) for these systems

[17], [18], [19]. This theorem states that if a trajectory Γ(x)
is confined to a closed and bounded region R that does

not contain any fixed points of the system, Γ(x) eventually

approaches a closed orbit or is a closed orbit. In any case, R

contains a closed orbit. In order to apply the PBT, we have to

find bounds of such a region R. This is usually done in two

steps: First, a trapping region, that is, a forward invariant

closed and bounded set that is eventually reached by all

forward trajectories, is constructed. The nullclines are often

helpful here. Second, since both models contain a single fixed

point inside the trapping region, this has to be eliminated by

excluding a small disk with radius ǫ about x̄. For R to be

still positively invariant, all real parts of the eigenvalues of
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Fig. 6. A. Nullclines and limit cycle of the AIO (17) for parameter values
a = 9 and b = 2. B. Bifurcation diagram with a supercritical HB.
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Fig. 7. A. Nullclines and limit cycle of the SDO (18) for parameter values
a = 1 and b = 3. B. Bifurcation diagram with a supercritical HB.

J µ
f (x̄) have to be positive, which means that x̄ must be a

repeller. Thus, once a trapping region has been found, the

existence of a closed orbit can be proven by studying the

local phase portrait of the fixed point.

A representative model for an AIO is the dioxide-

iodine-malonic acid reaction, which is similar to the well-

known Belousov-Zhabotinsky reaction. A simplified non-

dimensionalized version of this reaction reads [19]

ẋ = a − x − 4xy

1 + x2
, a > 0

ẏ = bx

(

1 − y

1 + x2

)

, b > 0, (17)

where x and y are the dimensionless concentrations of iodine

and chlorine dioxid ions. The nullclines of system (17) are

shown in Figure 6 for parameter values a, b = (9, 2), along

a bifurcation diagram with a as bifurcation parameter. The

system undergoes a supercritical HB.

The brusselator is a well-known SDO model with vector

fields given by polynomials,

ẋ = a + x2y − (b + 1)x

ẏ = bx − x2y. (18)

Courses of nullclines and the stable limit cycle for parameter

values a, b = (1, 3) and the bifurcation diagram over the

parameter b are shown in Figure 7.

It should be mentioned that the course of the nullclines of

AIO and SDO models are typical for many two-dimensional

models that show sustained oscillations such as predator-

prey systems like the Lotka-Volterra model (see for example

Chapter 3 in [20]), the FitzHugh-Nagumo model from the

Hodgkin-Huxley theory of nerve membranes (more details

in Chapter 7 of [20]), or biochemical network models such

as described in [21], [22]. Furthermore, the PBT has been

generalized to higher dimensions for networks with certain

topology [23], [24], [25]. There are, however, only few
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results about the existence of limit cycles for arbitrary

network topologies.

C. Robustness of biological oscillators

Cellular rhythms, i.e. periodic behavior caused by inter-

actions between molecules, play important roles for living

systems. Examples for such intracellular oscillations that

have extensively been investigated both theoretically and

experimentally are circadian rhythms [26], [22], calcium

oscillations (e.g. [27], [28], [20]) or the cell cycle [29],

[30], [31]. For an introduction into biological oscillator

models we refer to [32], [33], [16]. The onset of theoretical

models for oscillating gene-protein networks was provided

by Goodwin [34], who proposed a minimal model of three

variables, a gene, protein and end product that inhibits its

own transcription. Thus the three variables are connected in a

single negative feedback loop. In contrast to two-dimensional

models, in three and more dimensions a single negative

circuit in the interaction graph can already give rise to Hopf

bifurcations and hence show periodic behavior.

Research that combines theoretical investigations on these

minimal models and experimental observations has created

design principles for synthetic biological oscillators in living

systems. Among the first of these was the repressilator

that consists of three mutually inhibiting gene products

in Escherichia coli [35]. A more complex synthetic gene-

metabolic oscillator that causes periodic behavior of a huge

amount of metabolites in E. coli was designed by [36].

A comparison with the minimal theoretical models just

described and experimental observations has revealed several

phenomena that cannot be captured well by those models.

Robustness of oscillations with respect to perturbations in

initial conditions and parameter variations, or the ability to

maintain a stable period and amplitude under fluctuating

conditions, are important issues in this context (see for ex-

ample [26], [37], [22], [38], [39]). For two- or three variable

models, stable limit cycles only exist in a small region of

the parameter space that is bounded by Hopf bifurcations

[32]. The conditions for a Hopf bifurcation to occur are

especially restrictive for the AIO and SDO oscillator models,

for example, the fixed point must lie between the maximum

and minimum of the first nullcline [40], [41].

Different mechanisms are known that can stabilize peri-

odic behavior. The most often investigated among these are

time-delays (e.g. [21], [5], [22], [39], [42]) and large time-

scale differences (e.g. [21], [40], [41], [25]). The latter are

particularly relevant for biochemical networks that naturally

include processes at different time scales. Transcription and

translation are for example on a scale of minutes and hours

and slow compared to posttranscriptional modifications of

proteins or protein-DNA interactions, which are assumed

to be in equilibrium after seconds [1]. For AIO and SDO

models that have a stable fixed point, multiplication of the

y-vector field with a sufficiently small time scale parameter

ǫ creates a limit cycle by a Hopf bifurcation [40]. These

are known as relaxation oscillations and characterized by

two time scales: The system moves slowly along the slow

manifold given by the x-nullcline, where x1 is in a quasi-

steady state, and makes fast transitions at the local minimum

and maximum of this manifold during which only the fast

component x1 changes considerably.

Introducing a time-delay τ into the system makes analysis

generally much more complex and requires the use of

techniques for delay-differential equations. Fixed points x̄

are however independent of the delay, and their stability

can also be analyzed via linearization. The only difference

to ordinary differential equations is that the characteristic

equation is not a polynomial in the eigenvalues λ any more

but a transcendental equation with an infinite spectrum of

eigenvalues. Introducing time-delays is more efficient in

stabilizing oscillations than large time-scale differences, and

some of the conditions that are necessary for the occurence

of Hopf bifurcations in the ODE model can be overcome

by time-delays. Periodic behavior is for example possible in

a one-variable model with delayed negative feedback or a

two-variable model with a single negative feedback circuit.

Moreover, the strong necessary condition for the fixed point

of AIO and SDO models to lie between the local extrema of

the x-nullcline is not required any more.

Besides increasing the parameter region in which the sys-

tem has a stable limit cycle, both large time-scale differences

and time-delays usually also increase amplitude and period

of the oscillations.

There is evidence that more complex networks with inter-

related feedback circuits and coupling of oscillators can also

make oscillations more robustness to perturbations [37], [43],

[38], [39]. Most of these studies are heuristic, which raises

the question of about what can be generalized to arbitrary

network structures and kinetics.

V. CONCLUSIONS

With this contribution we intended to give a tutorial to

understanding the emergence of complex dynamic behavior

in intracellular networks, with a particular focus on biolog-

ical switches and oscillations. These are generically caused

by saddle-node and Hopf bifurcations. We started with an

introduction about the normal forms for those bifurcations,

and then discussed their role in the context of biological

network examples.

A prerequisite for the emergence of bifurcations in bio-

logical networks are the existence of nonlinear feedback, and

minimal models for switches or sustained oscillations consist

of positive auto-regulation and negative feedback between

two components. While many subsystems that include such

feedback structures have been identified to be responsible

for complex behavior, several studies indicate that those core

models alone are less robust than the real biological systems.

Moreover, they often do not capture all features of the real

systems like robustness of amplitude and period of oscil-

lations. Consequently, it seems that more complex network

structures with interrelated feedback circuits contribute to the

robustness and stability of biological systems, and analysis

methods for studying robustness in these larger networks is

an important topic of current research in this field.
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