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Abstract: We study the problem of computing outer bounds for the region of steady states
of biochemical reaction networks modelled by ordinary differential equations, with respect to
parameters that are allowed to vary within a predefined region. Using a relaxed version of the
corresponding feasibility problem and its Lagrangian dual, we show how to compute certificates
for regions in state space not containing any steady states. Based on these results, we develop
an algorithm to compute outer bounds for the region of all feasible steady states. We apply
our algorithm to the sensitivity analysis of a Goldbeter–Koshland enzymatic cycle, which is
a frequent motif in reaction networks for regulation of metabolism and signal transduction.
Copyright c© 2008 IFAC.

1. INTRODUCTION

A basic question in the analysis of biochemical reaction
networks is how steady state concentrations change with
parameters. Metabolic Control Analysis (MCA) is a classi-
cal tool to answer this question (Kacser et al., 1995), where
the analysis is based on a linear approximation of the sys-
tem’s equations around the steady state. Due to the linear
approximation, results from MCA are only valid if param-
eter variations are small. However, in natural biochemical
reaction networks, one usually faces large parameter varia-
tions: in genetic engineering, common techniques like gene
knock-outs or knock-downs, overexpression or binding site
mutations typically give rise to large parameter variations.

It follows that there is a need to compute changes in steady
state values which are due to large parameter variations.
One approach to broaden the validity of results from MCA
to larger parameter variations is to include higher order
approximations at the nominal point (Streif et al., 2007).
Although such an approach may extend the validity of the
approximation, it still gives results which are in general
only locally valid.

We will thus rather take a different route and study the
problem from the perspective of computing the set of all
steady states for given ranges in which parameter values
may vary. In contrast to classical, local sensitivity analysis,
such an approach allows to directly evaluate the range that
steady state concentrations can take for given parameter
ranges. The drawback is that it is not directly possible to
assess the influence of individual parameters on the steady
state. However, by repeating the computation for different
parameter ranges, also this information may be obtained.

Computing the set of steady states analytically is only
possible in very rare cases. Even if an analytical solution
for the steady state is known, computing the corresponding
set for all possible parameter values may be difficult.
Due to this difficulty, non-deterministic approaches are
frequently used to solve this problem. A common tool for
this kind of analysis are Monte Carlo methods (Robert
and Casella, 2004), which are routinely applied in the
analysis of uncertain biochemical reaction networks (Alves
and Savageau, 2000; Feng et al., 2004). However, Monte
Carlo methods do not give reliable results in the sense
that it is possible to miss important solutions, which is
particularly problematic for highly nonlinear dependencies
of the steady state on parameters. Also, Monte Carlo
approaches to the problem at hand typically require that
all of the possibly multiple steady states for specific
parameter values can be computed explicitly, which is
often a difficult task in itself.

Continuation methods that track the changes in steady
state values upon parameter variations are an efficient
computational tool for this problem (Richter and De-
Carlo, 1983; Kuznetsov, 1995), but are restricted to low-
dimensional parameter variations and are thus in gen-
eral unsuitable for exploring higher-dimensional parameter
spaces.

Global optimization methods employing branch and bound
techniques or interval arithmetics would in principle be
suited to compute steady state regions (Maranas and
Floudas, 1995; Neumaier, 1990). However, it seems that
the corresponding computational cost has obstructed their
application to the analysis of biochemical reaction net-
works so far.
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In this paper, we propose a new approach to obtain
reliable bounds on steady state values under uncertain
parameters in a computationally efficient way. The paper
is structured as follows. In Section 3, we study the problem
of finding certificates that a given set in state space
does not contain a steady state for any parameters in a
given set in parameter space. In Section 4, we use the
results obtained in Section 3 to develop an algorithm that
computes outer bounding regions of steady state values for
a given set in which parameters vary. The application of
the proposed analysis method is shown for two example
reaction networks in Section 5.

Mathematical notation

The space of real symmetric n× n matrices is denoted as
Sn. The order operator with respect to the positive orthant
in Rm×n is denoted as “≤”, i.e. 0 ≤ X ∈ Rm×n ⇔ 0 ≤
Xi,j for i = 1, . . . ,m, j = 1, . . . , n. The order operator with
respect to the cone of positive semidefinite (PSD) matrices
in Sn is denoted as “4”, i.e. 0 4 X ∈ Sn ⇔ X is PSD.
The trace of a quadratic matrix X ∈ Rn×n is denoted as
trX.

2. PROBLEM STATEMENT AND BASIC IDEA

We consider biochemical reaction networks that are mod-
elled by ordinary differential equations. This modelling
framework is quite general and covers most metabolic
networks as well as many signal transduction pathways,
if spatial effects can be neglected. Mathematically, such
models are commonly written as

ẋ = Sv(x, p), (1)
where x ∈ Rn is the concentration vector, S ∈ Rn×m is the
stoichiometric matrix, p ∈ Rm is the vector of parameter
values and v(x, p) ∈ Rm is the vector of reaction fluxes
(Klipp et al., 2005). Throughout this paper, we assume
that fluxes are modelled using the law of mass action,
where v takes the form

vj(x, p) = pj

n∏
k=1

x
σjk

k , (2)

for j = 1, . . . ,m. The constants σjk are integers represent-
ing the stoichiometric coefficient of the species k taking
part in the j-th reacting complex. In the case of mass
action kinetics, the dimensions of the parameter vector
and the flux vector are in general the same. Note that our
results can be extended to rational functions describing
the fluxes, such as used for Michaelis–Menten kinetics, in
a straightforward way.

The problem under consideration can be formulated as
follows. Given a set P ⊂ Rm in parameter space, compute
a set Xs ⊂ Rn that contains all steady states of the
system (1) for parameter values taken from P. Ideally,
the set Xs should be as small as possible, such that for
all xs ∈ Xs, there is a parameter vector p ∈ P with
Sv(xs, p) = 0. Then,

Xs = {x ∈ Rm | ∃p ∈ P : Sv(x, p) = 0} . (3)
However, for the case m > 1, when continuation methods
are not suitable, there are at present no general methods
to compute Xs efficiently and reliably.

We present a method to address this problem that works
for arbitrarily large state and parameter spaces, does not
need to compute steady state values explicitly and is
computationally efficient. The method is able to compute
reliable, though conservative outer bounds on the set Xs

of all steady states.

In order to search for sets of steady states for a given
parameter set P, we need means to test whether a candi-
date solution Xs obtained in such a search is actually valid
or not. Such a test is readily formulated as a feasibility
problem. Moreover, we will see that the Lagrangian dual
for this feasibility problem allows to certify given regions
in state space as not containing a steady state for any
parameter value from the set P. We then develop an
algorithm that uses this information to construct outer
bounds on the region Xs of all steady states.

In this paper, we consider only hyperrectangles for the sets
Xs and P in state and parameter space. An extension to
more general convex polytopes is in principle easy from
the theoretical perspective, but it requires a much more
elaborate implementation on the practical side.

3. FEASIBILITY OF STEADY STATE REGIONS

3.1 Feasibility problem and semidefinite relaxation

The problem of testing whether a given hyperrectangle Xs

in state space contains steady states of the system (1),
for some parameter values in a given hyperrectangle P
in parameter space, can be formulated as the following
feasibility problem:

(P ) :


find x ∈ Rn, p ∈ Rm

s.t. Sv(x, p) = 0
pj,min ≤ pj ≤ pj,max j = 1, . . . ,m

xi,min ≤ xi ≤ xi,max i = 1, . . . , n.

(4)

The same problem appears in the context of parameter
identification in a recent paper by Kuepfer et al. (2007).
They developped a method that uses an infeasibility cer-
tificate for the problem (4) to exclude regions in parameter
space from the identification procedure, given a set of
steady state measurements. In this section, we take their
approach to find an infeasibility certificate for problem (4),
but give more details about the underlying mathematical
techniques.

Relaxing the feasiblity problem (4) to a semidefinite pro-
gram (Vandenberghe and Boyd, 1996) ensures computa-
tional efficiency. The applied relaxation is based on a
quadratic representation of a multivariate polynomial of
arbitrary degree (Parrilo, 2003). In the first step, we con-
struct a vector ξ containing monomials that occur in the
reaction flux vector v(x, p). In the special case where no
single reaction has more than two reagents, a starting point
for the construction of ξ is
ξT = (1, p1, . . . , pm, x1, . . . , xn, p1x1, . . . , pjxi, . . . , pmxn),
which can usually be reduced by eliminating components
that are not required to represent the reaction fluxes. We
define k such that ξ ∈ Rk. Note that this approach is not
limited to second order reaction networks. In more general
cases, one has to extend the vector ξ by monomials that
are products of several state variables.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9702



Using the vector ξ, the elements of the flux vector v(x, p)
can be expressed as

vj(x, p) = ξTVjξ, j = 1, . . . ,m, (5)

where Vj ∈ Sk is a constant symmetric matrix. The choice
of Vj is generally not unique, as an expression of the
form pjxixk can be decomposed as either (pjxi)(xk) or
(pjxk)(xi). This fact may be used to introduce additional
equality constraints in the relaxed problem (8), but we will
neglect this for simplicity of notation.

Using (5), the system (1) can be written as

ẋi = ξTQiξ, i = 1, . . . , n, (6)

where Qi =
∑m

j=1 SijVj ∈ Sk are constant symmetric
matrices.

The original feasibility problem (4) is thus equivalent to
the problem

find ξ ∈ Rk

s.t. ξTQiξ = 0 i = 1, . . . , n
Bξ ≥ 0
ξ1 = 1,

(7)

where the matrix B ∈ R(2k−2)×k is constructed to
cover the inequality constraints in (4), e.g. the constraint
p1,min ≤ p1 ≤ p1,max is represented as(

−p1,min 1 0 . . . 0
p1,max −1 0 . . . 0

)
ξ ≥ 0.

Corresponding constraints for higher order monomials in ξ
are obtained easily as pj,minxi,min ≤ pjxi ≤ pj,maxxi,max

and have to be included in the matrix B.

A relaxation to a semidefinite program is found by setting
X = ξξT. The resulting non-convex constraint rank X = 1
is omitted in the relaxation. Instead, several consequences
of how X is defined, namely X11 = 1 and X < 0, are used
as convex constraints. The relaxed version of the original
feasibility problem (4) is thus obtained as

(RP ) :



find X ∈ Sk

s.t. tr(QiX) = 0 i = 1, . . . , n

tr(e1e
T
1 X) = 1

BXe1 ≥ 0
BXBT ≥ 0

X < 0,

(8)

where e1 = (1, 0, . . . , 0)T ∈ Rk.

The basic relationship between the original problem (4)
and the relaxed problem (8) is that if the original problem
is feasible, then the relaxed problem is also feasible. Thus,
the relaxation allows to certify a region in state space as
infeasible for steady states, as we will see when going to
the Lagrange dual problem.

3.2 Infeasibility certificates from the dual problem

The Lagrange dual problem can be used to certify infea-
sibility of the primal problem (8). First, the Lagrangian
function L is constructed for the primal problem. We
obtain

L(X, λ1, λ2, λ3, ν) = −λT
1 BXe1 − tr(λT

2 BXBT)

− tr(λT
3 X) +

n∑
i=1

νitr(QiX) + νn+1(tr(e1e
T
1 X)− 1),

where λ1 ∈ R2k−2, λ2 ∈ S2k−2, λ3 ∈ Sk and ν ∈
Rn+1. Using the cyclic property of the trace operator, i.e.
tr(ABC) = tr(BCA) = tr(CAB), we rewrite

tr(λT
2 BXBT) = tr(BTλT

2 BX)

and

λT
1 BXe1 = tr(e1

λT
1

2
BX) + tr(eT

1

λ1

2
BTX)

= tr((e1
λT

1

2
B + eT

1

λ1

2
BT)X).

The second reformulation has also the advantage of pro-
viding a symmetric multiplier for X, which is more efficient
from the computational side.

Based on the Lagrangian L, the dual problem is obtained
as

max inf
X∈Sk

L(X, λ1, λ2, λ3, ν)

s.t. λ1 ≥ 0, λ2 ≥ 0, λ3 < 0,

which is equivalent to

(D) :



max νn+1

s.t. BTλ2B + e1λ
T
1 B + BTλ1e

T
1

+λ3 +
n∑

i=1

νiQi + νn+1e1e
T
1 = 0

λ1 ≥ 0, λ2 ≥ 0, λ3 < 0.

(9)

It is a standard procedure in convex optimisation to use
the dual problem in order to find a certificate that guar-
antees infeasibility of the primal problem (Boyd and Van-
denberghe, 2004). For the problem at hand, this principle
is formulated in the following theorem.
Theorem 1. If the dual problem (9) has a feasible solution
where νn+1 > 0, then the primal problem (4) is infeasible.

Proof. Note that the constraints of the dual problem (9)
are homogenous in the free variables: if (λ′1, λ

′
2, λ

′
3, ν

′) is
feasible, then also (αλ′1, αλ′2, αλ′3, αν′) with any α ≥ 0 is
feasible. In particular, choosing all free variables to be zero
is always a feasible solution of the dual problem (9).

Let d∗ be the optimal value of the dual problem (9). By
the previous argument, it is clear that either d∗ = 0 or
d∗ = ∞. Under the assumption made in the theorem, we
have d∗ = ∞.

To the primal feasibility problem (8), we can associate a
minimization problem with zero objective function and the
same constraints as in (8). Let p∗ be the optimal value
of this minimization problem. We have p∗ = 0, if the
primal problem (8) is feasible, and p∗ = ∞ otherwise.
Weak duality of semidefinite programs (Vandenberghe and
Boyd, 1996) assures that d∗ ≤ p∗. In particular, d∗ = ∞
implies p∗ = ∞, and the primal problem (8) as well as the
original feasibility problem (4) are both infeasible. 2

Theorem 1 sets the basis for our further considerations.
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4. BOUNDING FEASIBLE STEADY STATES

In this section, we present an approach to find bounds on
the steady state region Xs, based on the results obtained
in the previous section. As basic additional requirement,
we assume that some upper and lower bounds on steady
states are already known previously by other means. Let
these bounds be given by

xi,lower ≤ xi ≤ xi,upper, i = 1, . . . , n. (10)

In biochemical reaction networks, such bounds can often
be obtained from mass conservation relations, as done for
the examples in Section 5. Also, it is often possible to
show positive invariance of a sufficiently large compact set
in state space for the system (1). These bounds may be
very loose though, and the main objective of our method
is to tighten them as far as possible.

To this end, we use a bisection algorithm that finds the
maximum ranges [xj,lower, xj,min] and [xj,max, xj,upper] for
which infeasibility can be proven via Theorem 1. The
algorithm iterates over j = 1, . . . , n, while the steady state
values xi for i 6= j are assumed to be located within the
interval given by inequality (10).

We give the bisection algorithm in pseudocode for com-
puting the lower bound x1,min. The computation of the
upper bound x1,max works in essentially the same way,
with some obvious modifications.
Algorithm 1. (Lower bound maximization by bisection).

up guess <- x1,upper

lo guess <- x1,lower

next x1 <- x1,upper

while (up guess - lo guess)≥ tolerance
use constraint x1,lower ≤ x1 ≤ next x1

solve semidefinite program (D)
if d∗ = ∞

lo guess <- next x1

increase next x1 by 1
2(up guess - next x1)

else
up guess <- next x1

decrease next x1 by 1
2(next x1 - lo guess)

endif
endwhile
x1,min <- lo guess

Due to the availability of efficient solvers for semidefinite
programs and the use of bisection to maximize the interval
that is certified as infeasible, Algorithm 1 can run consid-
erably fast on standard desktop computers, as we will see
in the examples discussed in the following section.

In our analysis method, Algorithm 1 is run for all state
variables, and as both maximization of the lower bound
and minimization of the upper bound of the steady state
values. Its output is a hyperrectangle in state space con-
taining all steady states for the assumed parameter ranges.
This is a relevant information for the global sensitivity
analysis of a biochemical reaction network, as it allows to
discriminate concentration values that are highly affected
by the assumed parameter variations from others that are
less affected. Moreover, by repeating the computation for
different parameter ranges, it is also possible to assess
the influence of individual parameters on steady state

concentrations, which is closer related to classical, local
sensitivity analysis.

5. EXAMPLES

5.1 A simple conversion reaction

As first example, we consider a simple conversion reaction
where the region of steady states for a given parameter
box can be computed analytically. Consider the reaction
network

A
k1

�
k2

B.

Denote the concentrations of A and B as a and b, respec-
tively. There is a conservation relation a(t) + b(t) = a0, so
the system can be modelled by one differential equation

ȧ = k2(a0 − a)− k1a. (11)
Furthermore, there is a unique steady state as for all
parameter values, given by

as =
k2a0

k1 + k2
.

From the conservation relation, we have the loose bound
0 ≤ as ≤ a0 which is valid for all parameter values. Assume
now that a0 = 1 is fixed, and let the other parameters vary
in a box k1, k2 ∈ [kmin, kmax]. Then, the steady state varies
in the interval

as ∈
[

kmin

kmax + kmin
,

kmax

kmin + kmax

]
.

In the specific case where kmin = 1 and kmax = 2, the
steady state interval is as ∈ [ 13 , 2

3 ]. Our algorithm is able
to compute numerically exact bounds in these cases. For
a numerical precision of 10−6, computation time is a few
seconds on a standard desktop computer.

5.2 An enzymatic cycle

As a more complex example, where the steady state region
for a given parameter box cannot be computed analyti-
cally, we consider an enzymatic cycle. These cycles appear
very frequently in cellular reaction networks, in particular
in the form of phosphorylation/dephosphorylation cycles
(Shacter et al., 1984). An enzymatic cycle as encoun-
tered in covalent modification of proteins (Goldbeter and
Koshland, 1981) is typically described by the reaction
network

E + A
k1

�
k2

C1

C1
k3→ E + A∗

P + A∗ k4

�
k5

C2

C2
k6→ P + A.

(12)

There are three conservation relations
[A] + [A∗] + [C1] + [C2] = A0

[E] + [C1] = E0

[P ] + [C2] = P0.

Denoting a = [A∗], c1 = [C1] and c2 = [C2] and using the
law of mass action, the reaction flux vector is given by
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v =


k1(A0 − a− c1 − c2)(E0 − c1)

k2c1

k3c1

k4(P0 − c2)a
k5c2

k6c2

 .

Due to the conservation relations, we only need to use
three differential equations in the model, which is given
by

d

dt
(a, c1, c2)T =

(0 0 1 −1 1 0
1 −1 −1 0 0 0
0 0 0 1 −1 −1

)
v. (13)

For the sensitivity analysis, the parameters k1 and k4 as
well as the total concentrations A0, E0 and P0 are assumed
to be fixed at k1 = 105, k4 = 5 · 104, A0 = 1 and
E0 = P0 = 0.01. The other parameters are assumed to be
variable parameters, with variations around their nominal
values k2,nom = k5,nom = 1 and k3,nom = k6,nom = 103.

From the conservation relations and invariance of the
positive orthant we have the steady state bounds

0 ≤ a ≤ A0, 0 ≤ c1 ≤ E0, 0 ≤ c2 ≤ P0,

which are valid for any parameter values.

We have applied the proposed analysis method to find
tighter bounds on possible steady state values, comparing
three different regions in which parameters of the enzy-
matic cycle are allowed to vary. The three different regions
are given by P1, P2 and P3, where P1,P2,P3 ⊂ R4 and

• (k2, k3, k5, k6) ∈ P1 ⇔ 0.98 ki,nom ≤ ki ≤ 1.02 ki,nom,
corresponding to parameter variations of up to 2%,

• (k2, k3, k5, k6) ∈ P2 ⇔ 0.9 ki,nom ≤ ki ≤ 1.1 ki,nom,
corresponding to parameter variations of up to 10%,
and

• (k2, k3, k5, k6) ∈ P3 ⇔ 0.5 ki,nom ≤ ki ≤ 2 ki,nom,
corresponding to up to 2–fold parameter variations,

with i = 2, 3, 5, 6 in all three cases.

The dual problem (D) has been constructed by using
ξT = (1, k2, k3, k5, k6, a, c1, c2), (14)

and deriving appropriate matrices Qi, B, for the steady
state equations and the constraints, respectively. Algo-
rithm 1 was then used to compute bounds on the steady
state concentrations. We compare these results to an esti-
mate for the region of steady state concentrations obtained
by Monte–Carlo tests. The results are shown in Figure 1.
The average computation time to obtain the feasible inter-
vals for all three state variables and one parameter region
was about 25 seconds. The Monte–Carlo tests done to
produce the figures took consistently about 20 % more
computation time, where 1000 parameter points were used
for each test. However, for a reliable evaluation by Monte–
Carlo methods, much more points should be used, which
would increase computation time significantly.

As can be seen from the figure, our approach is able to find
tight intervals for the steady state values of the individual
concentrations. However, the results also highlight the
limitations of using hyperrectangles if the steady state
values are highly correlated.

Our analysis also yields a biochemical interpretation, re-
lated to the property of ultrasensitivity. The concept of

(a) Parameter region P1 (2% variation)

(b) Parameter region P2 (10% variation)

(c) Parameter region P3 (2–fold variation)

Fig. 1. Feasible steady states for the enzymatic cycle
with three different parameter regions, comparison
of reliable bounds obtained with Algorithm 1 and
Monte–Carlo estimates. Light gray regions have been
certified infeasible by Algorithm 1. Black dots are
steady state values obtained from Monte-Carlo tests.
Dark gray regions are known to be infeasible from
conservation relations.
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p

x

p0

Fig. 2. Illustration of ultrasensitivity. Response of an
output variable x to a control variable p. The response
is ultrasensitive, with high sensitivity around the
nominal value p0 and considerable less sensitivity for
other values.

ultrasensitivity is quite important for biochemical reaction
networks, in particular for those that constitute cellular
signal transduction pathways (Levine et al., 2007). Shortly,
ultrasensitivity means that a small variation in a control
variable has a relatively large effect on an output variable,
whereas for increasing variations in the control variable,
the range of the output variable will be considerably less
increasing (see also Figure 2). Thus, ultrasensitivity is
an inherently non-linear and non-local property. For the
enzymatic cycle, a variation of only 2% in parameters
already allows the steady state value of [A∗] to vary over
almost half of the interval given from the conservation
relation, and with an allowable parameter variation of 10%
the steady state value of [A∗] can span nearly the whole
interval. This is a clear indication of the ultrasensitivity
which is typical for the enzymatic cycle (Goldbeter and
Koshland, 1981).

In addition, our results show that the steady state value
of [C1], the concentration of the intermediate enzyme–
substrate complex, is not ultrasensitive, because its value
spans a large interval only for large parameter variations.
Similar results hold for [C2].

6. CONCLUSIONS

We have studied the problem of computing the region of all
steady states of biochemical reaction networks, provided
that parameters are allowed to vary within a known region.
This is an important problem in sensitivity analysis of
reaction networks. Our approach is based on formulating a
feasibility problem to check whether a candidate region in
state space actually contains steady states. This feasibility
problem is relaxed to a semidefinite program, and its
Lagrangian dual provides certificates of infeasibility of a
candidate region in state space. These certificates can be
used to efficiently minimize the estimate of the known
feasible region in state space by a bisection algorithm.

We have applied our sensitivity analysis to two simple
example networks. For the first example, our algorithm is
able to compute numerically exact bounds, which could
be verified from the analytical solution. In the second
example, we compared the bounds obtained from our
algorithm to steady state values obtained through Monte–
Carlo tests. In this example, our approach was more
efficient computationally than Monte–Carlo tests. Also,
it gives guaranteed bounds on the steady state values,
which cannot be achieved by randomized methods such

as Monte–Carlo tests. Based on the premise that we are
working with hyperrectangles only, the obtained bounds
are fairly tight. The second example also shows that
our approach is able to confirm ultrasensitivity of the
Goldbeter–Koshland switch.

In summary, our approach is a reliable and computation-
ally efficient method to estimate the range of possible
steady state variations due to multiple simultaneous pa-
rameter variations in biochemical reaction networks, and
thus provides a valuable tool for global sensitivity analysis.
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