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Abstract: Populations of heterogeneous cells play an important role in many biological systems.
In this paper we consider systems where each cell can be modelled by an ordinary differential
equation. To account for heterogeneity, parameter values are different among individual cells,
subject to a distribution function which is part of the model specification.
Experimental data for heterogeneous cell populations can be obtained from flow cytometric
fluorescence microscopy. We present a heuristic approach to use such data for estimation of the
parameter distribution in the population. The approach is based on generating simulation data
for samples in parameter space. By convex optimisation, a suitable probability density function
for these samples is computed.
To evaluate the proposed approach, we consider artificial data from a simple model of the
tumor necrosis factor (TNF) signalling pathway. Its main characteristic is a bimodality in the
TNF response: a certain percentage of cells undergoes apoptosis upon stimulation, while the
remaining part stays alive. We show how our modelling approach allows to identify the reasons
that underly the differential response. Copyright c© 2009 IFAC.
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1. INTRODUCTION

Modelling in systems biology typically aims at achieving
a quantitative description of intracellular signal transduc-
tion or differentiation processes at the cellular level. Most
models describe a “typical single cell” on the basis of ex-
perimental data obtained from cell populations. However,
to understand dynamical behaviour within heterogeneous
cell populations, a consideration of many cells within the
whole population is mandatory.

Phenotypic heterogeneity in genetically identical cells
arises mainly from stochasticity in biochemical reactions,
unequal partitioning of cellular material at cell division
(Mantzaris, 2007), or epigenetic differences (Avery, 2006).
When considering cells with high mutation rate, such as
cancer cells, also genotypic heterogeneity plays a major
role. For this paper, we choose to model heterogeneity by
differences in parameter values of the model describing the
process of interest. The model structure is on the contrary
assumed to be identical in all cells, as it usually represents
the physical interactions among molecules, which should
be independent of the cell’s state. The parametric ap-
proach is well suited for genetic and epigenetic differences.
We assume that interactions among cells in the population
can be neglected for the process to be studied. This is
indeed the case for many relevant signalling pathways,
and is also an implicit assumption in many single-cell
models. The distribution of parameter values within the
considered cell population is described by a suitable mul-
tivariate probability distribution function, which needs to
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be part of the model specification. Mathematical modelling
of such a process will typically result in a non-linear partial
differential equation for the probability distributions of
the state variables (Mantzaris, 2007). Since this is very
hard to deal with, we propose to use a sample based
approach, consisting of a large collection of ordinary dif-
ferential equation systems of identical structure, but with
differing parameter values which are subject to a specified
parameter distribution function.

In this paper, we explore the possibility to estimate the
parameter distribution function using experimental large-
scale measurements of the distributions of system variables
within the cell population. Such data is available on
a suitable scale from a newly developed measurement
technology, the flow cytometric fluorescence microscopy
(Ortyn et al., 2007), which is a combination of classical
flow cytometry and fluorescence microscopy.

Classical flow cytometry is a long-established tool to ob-
tain distributions of system variables in heterogeneous cell
populations (Perez and Nolan, 2006). To measure the ac-
tivity of signalling proteins, suitable fluorescence markers
are introduced into the cells. A stream of several thousand
cells per second is then injected into the measurement
device, and the fluorescence intensity of each individual
cell can be measured. While static flow cytometry mea-
surements are very common in experimental setups, cor-
responding time course data are rarely collected and are
typically quite sparse (Gardner et al., 2000).

Fluorescence microscopy is another established experimen-
tal tool, where microscopic images from a population of
fluorescently labelled cells are collected and evaluated by
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image analysis. With the classical technical implementa-
tion, fluorescence microscopy is limited to small sample
numbers. Yet percentages of cells showing a particular
feature, such as an apoptotic phenotype, are commonly
measured at several time instances. Also distributions of
relevant variables over a time course have been measured
(Mettetal et al., 2006), but the technology is not widely
used in dynamical modelling studies.

Flow cytometric fluorescence microscopy now combines
flow cytometry with single cell fluorescence microscopy by
taking microscopic images of individual cells while they
pass the flow cytometer. This allows to collect and analyse
microscopic images of several thousand fluorescently la-
belled cells per minute (Ortyn et al., 2007), with technolog-
ical requirements similar to classical flow cytometry. In this
way, distributions of signalling protein activities can be
measured efficiently in large populations of heterogeneous
cells (George et al., 2006). Although the technology has
not been used so far to obtain distributions of relevant
variables at several time instances, such measurements are
now becoming experimentally feasible.

Estimation of parameter distributions in model collec-
tions that represent a heterogeneous population is a long-
standing topic in pharmacodynamics (Al-Banna et al.,
1990). However, a crucial difference between pharmacolog-
ical experiments and cell population measurements is that
in pharmacodynamics, samples are taken from the same
individuals at all time points, measurements are linked to
individuals, and as a consequence individual trajectories
are known. This is not the case in fluorescence microscopy,
where each individual cell is measured only once, and for
each time point only the distribution of the measured
variable within the population is recorded.

Other established approaches to parameter estimation of
probabilistic systems usually consider a problem setup
where the output of a single cell is directly considered as
available measurement data at all time instances. This is
quite different to our setup, where each individual cell can
only be taken for measurement once, and thus only the
distribution of output variables within the population is
reliably known for all sampling times. As a consequence,
established approaches of parameter estimation seem not
to be well suited to deal with this problem.

In this paper, we present a heuristic approach to esti-
mate the parameter distribution from the distributions
of measured variables. In a first step, simulation data is
generated for a suitable choice of parameter samples. As
such, the approach is related to classical particle filters
(Doucet et al., 2001). However, instead of an iterative up-
dating, we construct a convex optimisation problem that
produces a suitable weighting for the considered parameter
samples.This weighting can directly be transformed into a
probability distribution for the parameter values.

The paper is structured as follows. In Section 2, the pop-
ulation modelling framework that we are using is intro-
duced. In Section 3, we present the proposed method to
estimate the parameter distribution function of the model
based on population measurements. Section 4 describes the
application of the proposed method to simulated data for a
model of the TNF signalling pathway, and discusses how to

use population modelling in order to evaluate differences in
cellular behavior within a heterogeneous cell population.

Notation: Denote by [ž, ẑ] ⊂ Rk the hyperrectangle {z ∈
Rk : ži ≤ zi ≤ ẑi, i = 1, . . . , k}.

2. PARAMETER-DISTRIBUTED POPULATION
MODELS

For the purpose of this paper, a model of a biochemical
reaction network in a population of N cells is given by the
collection of differential equations

ẋ(i)(t) = f(x(i)(t), π(i)), x(i)(0) = x
(i)
0 ,

y(i)(t) = h(x(i)(t)), i = 1, . . . , N
(1)

with state variables x(t) ∈ Rn, measured variables y(t) ∈
Rq, and parameters π ∈ Rr. The index i specifies the
individual cells within the population. We collect the pa-
rameters and initial condition in the extended parameter
vector p(i) = (π(i), x

(i)
0 ) ∈ Rm, where m = n + r.

We assume that the population is heterogeneous, where
heterogeneity is accounted for by differences in param-
eter values among individual cells. The distribution of
parameters and initial conditions is given by a cumulative
probability distribution function Φ : Rm → [0, 1] which is
part of the model specification, i.e. parameter values and
initial conditions for the cell with index i are subject to
the probability distribution

Prob(p(i)
1 ≤ p1, . . . , p

(i)
m ≤ pm) = Φ(p1, . . . , pm). (2)

Due to the measurement technology, the output of every
individual cell can only be measured once during the
course of an experiment, because the cell is removed from
the population for the measurement. Thus, instead of
considering the measured output y(i) directly, it makes
more sense to consider the distribution of y(i) at sampling
times tk, k = 1, . . . ,K as an output. At each sampling
time, M cells are selected arbitrarily from the population
and subjected to measurement. We assume that M is large
enough such that a reliable approximation of the output
distribution within the whole population can be obtained.
The measurement taken from (1) is thus given by functions
Ψk(y) = Prob(y(i)(tk) ≤ y), k = 1, . . . ,K, i = 1, . . . , N.

(3)
The goal of parameter distribution estimation is to com-
pute the function Φ(p1, . . . , pm) from knowledge of the
functions Ψk(y) and the model structure (1). Typically
the measurement of Ψk(y) is discretized over suitable hy-
perrectangles in the variable y. Since the number of cells
being measured is finite, the values of Ψk(y) are discrete
as well, although for most considerations we can assume
the number of cells large enough to neglect this.

3. PARAMETER ESTIMATION METHOD FOR
POPULATION MODELS

3.1 Maximum Entropy approach to probability density
estimation

The proposed estimation method is based on the simula-
tion of (1) for all parameter values and initial conditions
contained in a finite sample

P = {p(i) ∈ Rm : i = 1, . . . ,M}.
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A good choice for a sampling set is the so called Latin
hypercube, which ensures that the total range of the
relevant parameter set is captured (Stein, 1987).
Definition 1. A finite set P ⊂ [p̌, p̂] ⊂ Rm is called a latin
hypercube in Rm with sampling density d, if it contains
exactly one point p ∈ Rm such that

(α− 1)
p̂i − p̌i

d
< pi − p̌i < α

p̂i − p̌i

d
(4)

for each i = 1, . . . ,m and α = 1, . . . , d.

Having chosen the sampling set P as a Latin hypercube,
the goal is to estimate the fraction of cells, ϕ(p(i)), which
have an extended parameter vector close to p(i), such that
the weighted simulated trajectories approximate the mea-
sured population dynamics reasonably well. This fraction
is a measure for the relative contribution of the neighbour-
hood of p(i) to the cell population response. Additionally,
the fractions have to sum up to one,

M∑
i=1

ϕ(p(i)) = 1. (5)

Hence, ϕ(p(i)) can be interpreted as an approximation of
the probability density function at p(i).

In order to calculate ϕ(p(i)), the output space is divided
into hyperrectangles. For each sampling time, the fraction
of cells of the population which is contained in each
hyperrectangle is computed according to the following
definition. An illustration is shown in Figure 1.
Definition 2. A q-dimensional array Y (tk) ∈ Rβ1×...×βq is
called a discretized population distribution at time tk with
discretization vector β = [β1, . . . , βq], if

Y(γ1,...,γq)(tk) = Ψk(ŷγ)−Ψk(y̌γ), (6)
where γ1 = 1, . . . , β1, . . . , γq = 1, . . . , βq, and y̌γ

i = y̌i +

(γi − 1)
ŷi − y̌i

βi
and ŷγ

i = y̌i + γi
ŷi − y̌i

βi
, i = 1, . . . ,m.

Hereby y̌i and ŷi are the minimal respectively maximal
values of output i which are measured.

The array Y (tk) can be interpreted as a discrete approxi-
mation of the probability density function of the outputs.
To compute the ϕ(p(i)), i = 1, . . . ,M , the system (1) is
simulated for every p(i) ∈ P and the obtained outputs are
discretized.
Definition 3. A q-dimensional array Ỹ (i)(tk) ∈ Rβ1×...×βq

is called a discretized trajectory of ỹ(i) at time points tk,
k = 1, . . . ,K, with discretization vector β = [β1, . . . , βq],
if

y
y̌ ŷ

(a)

γ1

Y(γ1)

1 2 3 4 5
(b)

0

1
2

Fig. 1. Illustration of the discretized population distri-
bution. (a) shows as dots the measured outputs at
time tk and (b) depicts the corresponding discretized
population distribution for β = 5.

Ỹ
(i)
(γ1,...,γq)(tk) =

{
1, if ỹ(i)(tk) ∈ [y̌γ , ŷγ ]
0, otherwise,

γ1 = 1, . . . , β1, . . . , γq = 1, . . . , βq.

(7)

Hereby ỹ(i) is the output of the system obtained by
simulation with p(i). y̌γ , ŷγ are defined as before.

The array Ỹ (i)(tk) can also be interpreted as an approx-
imation of the probability density function for cells with
the parameter vector p(i). Given the discretized measured
population dynamics and the discretized simulated trajec-
tories, we intend to compute the fractions, ϕ(p(i)), such
that the difference between the weighted sum of simulated
trajectories and the measured population dynamics,

∆Y (ϕ, tk) =
M∑
i=1

ϕ(p(i)) Ỹ (i)(tk)− Y (tk), (8)

is zero, for k = 1, . . . ,K, where

ϕ =
[
ϕ(p(1)), . . . , ϕ(p(M))

]T

. (9)

This problem could be solved using standard least square
techniques, but this leads in many cases to dramatical
overfitting. Especially, if the measurement data does not
contain enough information to fit the parameter distri-
bution, a spiky probability density function is obtained.
Least square techniques generally select a minimum norm
solution for underdetermined systems, so it can happen
that parameters which are not identifiable show a peak in
the probability density function at a single point.

This should be avoided, because it is desirable that the
resulting distribution indicates whether a parameter is
identifiable given the measured data or not. Therefore, we
choose an entropy based approach to determine ϕ(p(i)).
Definition 4. The function Ent : RM → R given by

Ent(ϕ) = −
M∑
i=1

ϕ(p(i)) ln(ϕ(p(i))). (10)

is called the entropy of ϕ.

Given an underdetermined system of equations, the max-
imum entropy approach selects the solution which con-
tains least information, and thus avoids adding artificial
information to the measurement data (MacKay, 2003).
In our case this implies that the “flattest” probability
distribution which fits all the constraints is selected in
the optimisation problem. Thus, if a parameter is not
identifiable, we obtain a very flat distribution and no
information is added.

The entropy approach yields the optimisation problem
max Ent(ϕ)
s.t. ∆Y (ϕ, tk) = 0, k = 1, . . . ,K

1Tϕ = 1
ϕ ≥ 0,

(11)

where 1 = [1, . . . , 1]T ∈ RM . The solution of (11) is the
weighting vector ϕ, with the highest entropy which exactly
reproduces the discretized measured population dynamics.
Unfortunately, (11) is very likely to be infeasible because
even if the equation

∆Y (ϕ, tk) = 0, k = 1, . . . ,K, (12)
is underdetermined, it cannot be ensured that a solution
exists. Reasons are measurement errors and small cell
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numbers in measurements, but primarily an insufficient
discretization of the parameter space. To improve the
feasibility, small discrepancies between the measured and
the weighted simulated population are allowed. This leads
to the relaxed problem

max Ent(ϕ)
s.t. ∆Y (ϕ, tk) ∈ [−ê, ê], k = 1, . . . ,K

1T ϕ = 1
ϕ ≥ 0,

(13)

where ∆Y (ϕ, tk) ∈ [−ê, ê] denotes the constraint that each
element of ∆Y is bounded between −ê and +ê. As before,
the other constraints are that all weights sum up to one,
and that all weights are greater than or equal to zero.

We are left with the problem to define the error bound ê.
A known constraint is that ê ∈ [0, 1]. To obtain estimation
results that fit the measurements as good as possible, ê
is decreased to the minimal value for which (13) is still
feasible. This is done via a bisection algorithm.

The relaxed optimisation problem (13) is convex. The
entropy is concave and the constraints are linear. For
the class of convex optimisation problems efficient solvers
exist, for instance the primal-dual-interior point method
(Boyd and Vandenberghe, 2004). Convergence to the
global maximum in polynomial time can be guaranteed.

Based on the solution of (13), an estimate Φ̂ for the
parameter distribution function Φ is computed as

Φ̂(p) =
∑

i:p≥p(i)∈P

ϕ(p(i)). (14)

3.2 Distribution estimation for independent parameters

A simplifying yet convenient assumption is that parameter
values and initial conditions are independently distributed.
Although not strictly true in most cases, it is reasonable
to make this simplification also if parameters are only
weakly correlated. In this case, the probability distribution
function can be decomposed as

Φ(p) = Φ1(p1)Φ2(p2) · · ·Φm(pm), (15)
where Φi(pi) denotes the distribution function for the i-th
parameter.

Based on the estimate Φ̂ (14), estimates for the in-
dividual distribution functions can be computed by
marginalising the other parameters, i.e. taking Φi(pi) =
limpj→∞, j 6=i Φ(p). Thus an estimate Φ̂i for the individual
distributions is obtained as

Φ̂i(pi) =
∑

j:pi≥p
(j)
i
∈P

ϕ(p(j))
(16)

for i = 1, . . . ,m.

4. APPLICATION TO A TNF SIGNAL
TRANSDUCTION MODEL

4.1 Motivation for population modelling

TNF is a signalling hormone involved in the inflammatory
response of mammalian cells. It can induce programmed
cell death (apoptosis) via the caspase cascade, but has
also anti-apoptotic effects via the NF-κB pathway (Wajant

i 1 2 3 4 5

ai 0.6 0.2 0.2 0.5
bi 0.4 0.7 0.3 0.5 0.4

Table 1. Nominal parameter values for the
TNF signalling model (17).

et al., 2003). For many cell types, stimulation with TNF
will incude apoptosis in a certain percentage of the pop-
ulation, while the remaining cells stay alive. The reasons
for this heterogeneous behaviour are unclear, but of great
interest for biological research in TNF signalling. However,
a major obstacle to the direct experimental study of the
process is that the behaviour of individual cells cannot
be monitored on a population scale over the time scale
of interest. To overcome this problem, we propose the
use of population modelling and estimation of parameter
distributions from experimental population data. With a
suitable model, a collection of single cell trajectories can
be clustered according to the individual cell’s fate and
compared for characteristic differences in parameters or
early-stage cell behaviour.

In this paper, we use artificial measurement data, gener-
ated from simulations, for two reasons. First, suitable ex-
perimental data is not yet available. Second, the purpose of
the paper is more an evaluation of the estimation method
itself than its application in biological research. Also, since
no general results on parameter identifiability in the con-
sidered problem are available, such a study should be done
in each application of the method to evaluate identifiability
properties.

4.2 Presentation of the TNF signal transduction model

The model is based on earlier work from Chaves et al.
(2008) and is built from known activating and inhibitory
interactions among key signalling proteins. It includes as
state variables activities of the caspases 8 and 3 (C8, C3),
the transcription factor NF-κB and its inhibitor I-κB. The
model is given by the ODE system

ẋ1 = −x1 +
1
2
(β4(x3)α1(u) + α3(x2))

ẋ2 = −x2 + α2(x1)β3(x3)
ẋ3 = −x3 + β2(x2)β5(x4)

ẋ4 = −x4 +
1
2
(β1(u) + α4(x3)).

(17)

The state variables xi, i = 1, . . . , 4 are bounded between
0 and 1 and denote the relative activities of the sig-
nalling proteins C8, C3, NF-κB and I-κB, respectively.
The functions αj(xi), j = 1, . . . , 4 represent activating
connections and are given by αj(xi) = x2

i

a2
j
+x2

i

. Correspond-

ingly, βj(xi) = b2j
b2

j
+x2

i

, j = 1, . . . , 5 represent inhibiting
connections. aj and bj are parameters with values between
0 and 1, representing activation and inhibition thresholds,
respectively. The input u denotes the external TNF stim-
ulus. Nominal parameter values are given in Table 1.

4.3 Results of parameter distribution estimation

To evaluate the proposed approach we consider a vir-
tual experimental setup in which the caspase 3 and
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Fig. 2. Measured output distributions for caspase 3 activity
at the considered sampling times. The horizontal axis
gives the caspase 3 activity, the size of the bars
indicates the relative frequency in the population.

NF-κB activity is measured at the time points t ∈
{0, 0.5, 1, 2, 4, 6, 8, 10, 15, 20} by flow cytometric microscopy.
For each time point, the outputs of 10000 simulated cells
are obtained, resulting in an output density distribution
for each time point. Measurement errors are neglected in
this example to make the interpretion of the results as
simple as possible.

For this example, we assume heterogeneity in the parame-
ters a1, a4, b2, and b3. For the generation of measurement
data, each of the heterogeneous parameters is assumed
to be distributed according to a log-normal distribution
around the nominal values given in table 1. Each cell is
assumed to have an initial condition which corresponds
to the steady state with x1 = x2 = 0 for u = 0, where
x3 and x4 depend on the individual parameter values.
The considered heterogeneity is interesting, because it
results in a bimodal response of the population to a TNF
pulse applied during the time interval 0 < t < 2. The
output distributions in caspase 3 activity that would be
measured in this case are shown in Figure 2. About 35 %
of the population returns to zero caspase 3 activity, while
the remaining cells show sustained caspase activity. The
probability density functions of the parameter values are
shown in Figure 3.

For the identification of the parameter distribution, the
lower and upper bounds of all parameters are set to be
0 respectively 1. The sampling density d of the Latin
hypercube is set to 2000 and β = [10, 10]T is selected
as discretization vector for the outputs. The probability
density functions that are estimated for the different
parameters by our method are depicted in figure 3, in
comparison to the real density functions. As can be seen
in the figure, the probability density functions of a4, b2,
and b3 are approximated very well. Also for a1 we can see
good agreement. The distributions peak at approximately
the same point and the shape is roughly the same.

Although all parameters are identifiable, there are huge
differences in the identifiability of the single parameters.
The cumulative probability functions of a4 and b3 can
be estimated very well with a sampling density d of only
250 (results not shown). For the approximation of b2 and

0 0.25 0.5 0.75 1
0

2

4

6

8

a1

ϕ
1

0 0.25 0.5 0.75 1
0

2

4

6

8

a4

ϕ
2

0 0.25 0.5 0.75 1
0

2

4

6

8

b2

ϕ
3

0 0.25 0.5 0.75 1
0

2

4

6

8

b3

ϕ
4

Fig. 3. Comparison of actual (dashed) and estimated (full)
parameter probability function.

especially a1 more samples in the parameter space have
to be taken. This can be related to the observation from
the analysis done in Section 4.4, that a4 and b3 are of high
relevance for the bimodal response of the cells, while the
other two parameters do not have a high influence on this
property.

For the considered example, the computation is quite effi-
cient. Computation time on a standard desktop computer
was on the order of a few minutes, and most of the time
was spent computing trajectories for individual parameter
values. In the proposed algorithm, this task can easily be
parallelised for more complex models.

4.4 Analysis of the population model

In this section, we discuss the biological conclusions that
can be drawn from a computational analysis of the pop-
ulation model (17) with parameter distributions as used
in Section 4.3. For the considered system, it is of par-
ticular interest to distinguish between cells that undergo
apoptosis and cells that stay alive. In apoptotic cells, the
state variable x2 (caspase 3 activity) tends to a positive
value larger than a threshold θ. For non-apoptotic cells,
x2 returns to zero after a small transient rise.

In order to investigate the underlying differences that lead
to such a differential behaviour, we consider a sample of
parameter values p(i) taken from the distributions specified
in Section 4.3, giving rise to trajectories x(i)(t) of (17). The
parameter samples are clustered into the apoptotic set A
and the non-apoptotic set L by the criterium

A = {p(i) | x(i)
2 (Tend) ≥ θ}, L = {p(i) | p(i) /∈ A},

(18)
where θ = 0.3 for this study.

First let us compare the sets A and L by directly examin-
ing the respective parameter values. As seen from Figure 4,
the differences between the cells can mainly be explained
from differences in the value of the parameter b3, which is
the threshold for NF-κB to inhibit caspase 3 activation,
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Fig. 4. Comparison of parameter values for apoptotic (x)
and non-apoptotic (o) cells and approximate separa-
tion (19) in the a4–b3 plane.
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Fig. 5. Comparison of a few trajectories for apoptotic
(dashed) and non-apoptotic (full lines) cells.

and the parameter a4, which is the threshold for NF-
κB to activate I-κB. In fact, an approximative separation
criterium can be obtained directly from Figure 4 as

p ∈ A ⇔ b3 & 0.16 + 0.21a4. (19)
Apoptotic cells are thus characterised by high values for
b3 and low values for a4, which relates well to biological
intuition. The parameter b2, which is the threshold for
caspase 3 to inhibit NF-κB activation, seems to have little
to no influence on the cell fate. These results indicate that
the cell fate is determined by influences from the NF-κB
pathway to the caspase cascade, and not vice versa.

Next, we try to find early-stage markers for the cell’s fate.
This is of interest because individual parameter values
are not known when observing a single cell by e.g. live
cell imaging, yet we may want to predict the fate of a
specific individual cell. The collection of trajectories for
the considered parameter sample is shown in Figure 5.
Obviously, early-stage caspase activity is a good indicator
for the later fate of the cell. However, it is quite interesting
from the biological viewpoint that early-stage NF-κB
activity seems not to be a good indicator. In fact, the NF-
κB trajectories in Figure 5 separate only for t > 10, a time
for which most apoptotic cells show already high caspase
activity.

5. SUMMARY AND CONCLUSIONS

Heterogeneity in cell populations is an important aspect
for research in systems biology. However, computational
approaches to deal with heterogeneous populations are
rare. A reasonable way to describe heterogeneity is to as-
sume that parameter values are stochastically distributed
within the population.

In the modelling process, it is then necessary to esti-
mate the parameter distribution functions from suitable
experimental data. For this paper, we assume that the

output distribution in the cell population is measured at
discrete sampling times. We present an optimisation-based
approach to estimate parameter distributions from such
measurements, which minimizes the prediction error based
on a suitable sampling of the parameter space. With the
suggested latin hypercube sampling, the approach scales
well to systems with a high-dimensional parameter space.

We applied the suggested estimation method to artificial
data for a model of TNF signal transduction. For the
parameters where heterogeneity was assumed, our method
gives good estimates of the parameter distribution func-
tion. The results thus indicate that those parameters are
identifiable from the measurements used in this setup.
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M. Chaves, T. Eissing, and F. Allgöwer. Bistable biological systems:
A characterization through local compact input-to-state stabil-
ity. IEEE Trans. Autom. Control, 53:87–100, 2008.

A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte
Carlo Methods in Practice. Springer New York, 2001.

T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a
genetic toggle switch in Escherichia coli. Nature, 403:339–342,
2000.

T. C. George, S. L. Fanning, P. Fitzgeral-Bocarsly, R. B. Medeiros,
S. Highfill, Y. Shimizu, B. E. Hall, K. Frost, D. Basiji, W. E.
Ortyn, P. J. Morrissey, and D. H. Lynch. Quantitative measure-
ment of nuclear translocation events using similarity analysis
of multispectral cellular images obtained in flow. J. Immunol.
Methods, 311:117–129, 2006.

D. J. C. MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, Cambridge, UK,
2003.

N. V. Mantzaris. From single-cell genetic architecture to cell
population dynamics: quantitatively decomposing the effects of
different population heterogeneity sources for a genetic network
with positive feedback architecture. Biophys. J., 92:4271–4288,
2007.

J. T. Mettetal, D. Muzzey, J. M. Pedraza, E. M. Ozbudak, and A. van
Oudenaarden. Predicting stochastic gene expression dynamics
in single cells. Proc. Natl. Acad. Sci., 103:7304–9, 2006.

W. E. Ortyn, D. J. Perry, V. Venkatachalam, L. Liang, B. E. Hall,
K. Frost, and D. A. Basiji. Extended depth of field imaging for
high speed cell analysis. Cytometry A, 71:215–231, 2007.

O. D. Perez and G. P. Nolan. Phospho-proteomic immune analysis
by flow cytometry: from mechanism to translational medicine
at the single-cell level. Immunol. Rev., 210:208–228, 2006.

M. Stein. Large sample properties of simulations using latin hyper-
cube sampling. Technometrics, 29:143 – 151, 1987.

H. Wajant, K. Pfizenmaier, and P. Scheurich. Tumor necrosis factor
signaling. Cell Death Differ., 10:45–65, 2003.

1270


