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ABSTRACT

We present the bioSDP toolbox for Matlab, which pro-
vides methods for the analysis of biological networks with
parametric uncertainty. Its set based approach allows to
compute guaranteed bounds on the network behaviour un-
der uncertainty, or on the parameter values consistent with
uncertain measurement data. These two applications of
the toolbox are illustrated with two case studies for spe-
cific biological networks.

1. INTRODUCTION

The main goal of system biology is a quantitative descrip-
tion of cellular processes. Unfortunately, achieving this
is rather difficult, as models of biological systems are sub-
ject to a significant degree of uncertainty. This uncertainty
arises from limited knowledge about the system, mostly
due to limitations in the experimental technology, and/or
large variations in environmental and internal boundary
conditions. These are manifested by the large paramet-
ric uncertainty shown by most models of biochemical net-
works. Drawing dedicated conclusions about various sys-
tem properties is a major computational challenge under
such uncertainty.

We present the Matlab toolbox bioSDP which pro-
vides methods to analyse biological networks modeled by
ordinary differential equations with polynomial and ra-
tional terms. It allows to study the variation in steady
states of a network under parametric uncertainty, and to
upper-bound the size of the remaining parametric uncer-
tainty from noise corrupted measurement data. This al-
lows to derive guaranteed predictions about important sys-
tem properties despite the uncertainty in the input data.

The bioSDP toolbox is available under an open source
license from [1].

2. THEORETICAL BACKGROUND

In this section, we present the steady state uncertainty
analysis problem, the parameter estimation problem and
the algorithms used to solve them.

2.1. The steady state uncertainty analysis problem

The steady state uncertainty analysis problem [2, 3] is de-
fined by a system of polynomial or rational equalities

F (x, p) = 0, (1)

where x ∈ Rn is the network’s state vector (e.g. protein or
metabolite concentrations), p ∈ Rm is the parameter vec-
tor, and F is a vector of polynomial functions in x and p,
typically n-dimensional, describing the network’s steady
state conditions.

The values of the parameters p in (1) are uncertain in
that only a bounding box for the parameters is given, but
not the exact values. This box is defined by element-wise
inequalities, yielding the set

P =
{
p ∈ Rm | p̌ ≤ p ≤ p̂

}
, (2)

where p̌ and p̂ are element-wise lower and upper bounds
on the parameter vector p.

The task in the steady state uncertainty analysis prob-
lem is to compute a tight outer approximation X̂ for the
set X of all feasible solutions x of (1), i.e.,

X̂ ⊃ X =
{
x ∈ Rn | ∃p ∈ P : F (x, p) = 0

}
. (3)

In the algorithm implemented in the bioSDP toolbox,
the approximation X̂ is either computed as one big bound-
ing box for all feasible steady states, or as the union of
many small boxes, depending on the user’s choice. The
second option generally yields a tighter approximation at
the expense of a higher computational effort.

2.2. The parameter estimation problem

In the parameter estimation problem [4, 5], we consider a
dynamic network defined by the difference equation

xk = F (xk−1, p)

yk = H(xk, p),
(4)

where xk ∈ Rn, p ∈ Rm, and F are as in Section 2.1,
and yk ∈ Rq is a vector of measurements, which depends
on the network’s state via the measurement function H .
The index k = 1, . . . , N denotes the discrete time steps.
We assume that both F and H are polynomial or rational
functions in both the state x and the parameter p.

Uncertain measurement data are given as a bounding
box Yk on the output vector yk for each time point k,

Yk =
{
y ∈ Rq | y̌k ≤ y ≤ ŷk

}
, k = 1, . . . , N. (5)

Also, a bounding box on the states xk is given as

X =
{
xk ∈ Rn | x̌ ≤ xk ≤ x̂

}
. (6)



A parameter p is called consistent, if there exist a se-
quence of states xk ∈ X and a sequence of outputs yk ∈
Yk with k = 1, . . . , N satisfying (4). The goal in the
parameter estimation problem is to compute a tight outer
approximation P̂ of the set of consistent parameters P:

P̂ ⊃ P =
{
p ∈ Rm | p is consistent

}
. (7)

As in the steady state uncertainty analysis problem, the
algorithm implemented in bioSDP can either compute an
outer approximation P̂ as one big bounding box, or as the
union of many smaller boxes.

2.3. Iterative set exclusion with an infeasibility test

The algorithms implemented in bioSDP compute the outer
approximations X̂ and P̂ with an iterative set exclusion
approach. As a priori information, an initial estimate X̂0

or P̂0 is required. The basis of the set exclusion approach
is an infeasibility test, which applies to a system of poly-
nomial equalities and a box constraint of the form

G(χ) = 0

χ̌ ≤ χ ≤ χ̂,
(8)

where χ is a vector of uncertain variables, e.g., the state x
and the parameters p for the steady state uncertainty anal-
ysis problem, or the state and output sequences xk, yk and
parameters p for the parameter estimation problem. G is a
polynomial vector-valued function representing the equal-
ity constraints.

In each subsequent iteration step, the approximation
is refined by excluding subsets which pass an infeasibility
test. In iteration i, the algorithm generates an appropriate
list of test sets X̃i,1, . . . X̃i,r (or P̃i,1, . . . , P̃i,r for the pa-
rameter estimation problem), and applies the infeasibility
test to each test set. Those test sets which pass the infeasi-
bility test are then united to form the exclusion set X̃i, and
the refined approximation for the next iteration is obtained
as

X̂i+1 = X̂i \ X̃i. (9)

In each iteration, the test sets are reduced in size, and the
algorithm terminates when the size drops beneath a pre-
defined threshold.

The infeasibility tests are solved by a quadratic refor-
mulation of the problem (8) and semidefinite program-
ming [6]. Details on the construction of (8) and the in-
feasibility test are given in [2, 3] for the steady state un-
certainty analysis, and in [4] for the parameter estimation.

3. STRUCTURE OF THE bioSDP TOOLBOX

3.1. Analysis tasks

The main functionality of bioSDP is to offer methods for
solving the steady state uncertainty analysis problem from
Section 2.1, and the parameter estimation problem from
Section 2.2.

The main bioSDP routine for steady state uncertainty
analysis is stationary uncertainty. This routine takes
the problem setup specified in Matlab structure variables
called system and uncertainty, and computes an outer

approximation of the set of feasible steady states. The
system variable contains the definition of the model vari-
ables and equations, while the uncertainty variable de-
scribes the parameter range to consider as well as the a
priori state bounds. The behaviour of the uncertainty anal-
ysis function is further controlled by several options, which
are passed as an additional structure variable, here called
options, to the function.

A required option is set exclusion.method, which
specifies how regions in state space are removed from the
feasible set. The default choice is ’box shrinkage’,
which just tries to reduce the size of the initial box as far
as possible. A method which allows to obtain a more re-
fined uncertainty set is ’bisection’, in which the un-
certainty set is computed by multi-dimensional bisection.
However, the bisection method is only recommended for
state spaces up to dimension three due to significantly in-
creased computational effort in higher dimensions.

The steady state uncertainty analysis is then simply
performed by a call to stationary uncertainty, pass-
ing the problem setup in the variables system and uncer
tainty as well as the algorithm options as arguments to
the function.

The parameter estimation problem is handled by the
function parameter estimation. It also takes two prob-
lem definition variables as arguments. The first one, system,
contains the model definition, and the second one, uncer
tainty, contains the measurement bounds as well as the
a priori state and parameter bounds. As in the steady
state uncertainty analysis, either ’box shrinkage’ or
’bisection’ can be chosen as set exclusion method.

In addition to computing outer bounds by set exclu-
sion, bioSDP offers methods to compute samples of feasi-
ble steady states for the uncertainty analysis or consistent
parameters for the parameter estimation. These can for
example be used to evaluate the tightness of the computed
outer approximations.

3.2. Generic SDP problem solver

At the core of the bioSDP toolbox is an optimization algo-
rithm which solves set exclusion problems as discussed in
Section 2.3 with semidefinite programming methods. This
algorithm does the iteration required for the set exclusion,
constructs the appropriate semidefinite programs for the
infeasibility tests, and refines the bounding sets based on
the solutions to the semidefinite programs. The semidef-
inite programs are not solved by bioSDP itself, but are
handed to specialised optimisation toolboxes, for example
SeDuMi [7].

In short, the algorithm takes a system of constraints
as defined in (8), together with an initial bounding box on
the uncertain variables χ. The vector χ is thereby struc-
tured in variables where the uncertainty remains fixed to
the initial bounds (e.g., the parameter bounds in the steady
state uncertainty analysis problem), and variables where
the uncertainty is to be reduced as much as possible, while
ensuring that all feasible solutions to (8) are retained in
the set (e.g., the steady state bounds for the steady state
uncertainty analysis problem). The algorithm then itera-
tively prunes subsets of this initial uncertainty set, based
on results from the infeasibility tests.



Table 1. Nominal parameter values for the insulin path-
way model (10).

k1 k0 k2 kR k3 km3 ins
0.05 10−6 1.0 0.5 1.0 30 1.0

In typical use cases, this generic algorithm need not
to be called directly by the user. Instead, the wrapper
methods for individual analysis tasks as described in Sec-
tion 3.1 should be used. These methods take care of con-
structing the constraints (8) and the vector of uncertain
variables χ as appropriate for the specific task from the
problem-specific user input data.

3.3. Visualisation routines

The bioSDP toolbox offers two main possibilities for vi-
sualising the set based estimates resulting from the im-
plemented analysis algorithms: box plots for two- and
three-dimensional state or parameter spaces, and paral-
lel coordinates plots for problems of any dimension. The
output of the analysis functions described in Section 3.1
can directly be passed to the bioSDP routine visualize
uncertainty for this purpose.

4. EXAMPLE APPLICATIONS

We present the two main applications of the bioSDP tool-
box—steady state uncertainty analysis and parameter esti-
mation—with two exemplary studies. In the interest of
brevity, we discuss for each example only the problem
setup, some key points of their implementation in the bioSDP
toolbox, and significant conclusions drawn from the anal-
ysis. For the full implementation of both examples, we
refer the reader to the toolbox’ software package available
from [1], which contains both examples implemented as
Matlab scripts.

4.1. Uncertainty analysis of an insulin pathway model

The steady state uncertainty analysis is exemplified with a
simple insulin pathway model taken from [8]. The model
equations are given as

˙IR = −k0IR− k1 ins IR + kR (IRtot − IR− IRP)

˙IRP = k0IR + k1 ins IR− k2 IRP

˙IRSP = k3 IRP (IRStot − IRSP)− km3 IRSP,
(10)

with IR, IRP, and IRSP the concentrations of insulin
receptor, phosphorylated insulin receptor, and phospho-
rylated insulin receptor substrate, respectively. The total
protein amounts are conserved and given by IRtot = 10
and IRStot = 10. Note that the conservation relations can
directly be used to compute an a priori outer bound X̂0

independent of any parameter values.
For the steady state uncertainty analysis problem, we

assume that all of the model parameters may vary by a
factor of 2 around their nominal values, which are given
in Table 1. Using both the multi-dimensional bisection
method and the simpler box shrinkage, we let bioSDP
compute an outer approximation to the set of feasible steady
states under this uncertainty. The resulting outer estimate
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Figure 1. Results for the steady state uncertainty analy-
sis of the insulin pathway model (10). Top: Outer bounds
to the set of feasible steady states in a box plot. Bottom:
Outer bounds to the set of feasible steady states in a par-
allel coordinates plot together with sampled steady states.
Feasible intervals from the box shrinkage algorithm are
shown as light gray, and from the bisection algorithm as
dark gray.

X̂ on the feasible steady states is shown in Figure 1, to-
gether with some sampled steady states. These plots are
generated directly by bioSDP’s builtin visualisation rou-
tines discussed in Section 3.3. The comparison between
the outer bounds obtained with the set exclusion meth-
ods and the sampled steady states shows that the outer
bounds are reasonably tight. The computation time on a
standard desktop computer was about 50 seconds for the
box shrinkage method and 140 seconds for the bisection
method. Both methods achieved similar bounds in this ex-
ample. In the parallel coordinates plot, the thinning waist
between IR and IRP, from the bounds obtained by bisec-
tion, indicates a slight negative correlation between these
two variables. This correlation is also seen more explicitly
in the three-dimensional box plot.

4.2. Parameter estimation for a reversible modifica-
tion reaction

The set based parameter estimation with bioSDP is il-
lustrated with a very simplistic biological model of a re-
versible modification reaction. The time-continuous model
for this reaction is given by the scalar differential equation

ẋ = −km x+ kd(1− x), (11)



where x is the concentration of the unmodified variant of
the considered molecular species measured relative to its
total concentration, and km and kd are unknown parame-
ters to be estimated.

The parameter estimation is done for artificial mea-
surement data for x from five time points which are 0.1
time units apart. The measurement is uncertain in that
only upper and lower bounds are available. For the pur-
pose of this example, we set x̌ = (0.0, 0.44, 0.57, 0.6, 0.56)
as lower bound and x̂ = (0.1, 0.54, 0.67, 0.70, 0.66) as
upper bound.

First, we transform the differential equation model (11)
to a difference equation using the Euler-forward discreti-
sation scheme. In bioSDP, this is simply done by calling
the auxiliary function discretize ode, passing the con-
tinuous model (11), its state variable x, the length of the
time step (here 0.1) and the number of steps to take (here
4) as arguments. bioSDP then automatically generates the
discrete equations (4) and the internally required sequence
variables xk.

In the next step, the set based parameter estimation
is carried out by a call to the parameter estimation
function. The results from the set based analysis are com-
plemented by samples from the set of consistent parame-
ters obtained through Monte Carlo sampling. Result plots
from bioSDP’s visualisation routines are shown in Fig-
ure 2. From the parallel coordinates plot, we observe that
there seems to be a correlation in the consistent param-
eters: from the sampled parameter vectors, either both
elements are low, or both are high within the respective
intervals. Using the box plot with the ’bisection’ set
exclusion method, this observation is confirmed by the re-
sulting outer bound on the set of consistent parameters.

5. CONCLUSIONS

We have presented the bioSDP toolbox for Matlab. bioSDP
provides methods for steady state uncertainty analysis and
parameter estimation from uncertain measurement data in
biological networks. While the examples presented here
only involve small networks, the methods are also applica-
ble to medium-sized networks. For example, a case study
for a rather detailed model of tumor necrosis factor sig-
nalling is presented in [9].
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