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Abstract

involved genetic mechanisms.

take binary decisions over a long time scale.

Background: Cellular transformations which involve a significant phenotypical change of the cell’s state use
bistable biochemical switches as underlying decision systems. Some of these transformations act over a very long
time scale on the cell population level, up to the entire lifespan of the organism.

Results: In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the
biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours.
We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes
on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in
mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism’s
lifespan. We construct a simple mathematical model for this process based on experimental evidence for the

Conclusions: Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in
large populations of cells subject to the considered decision process. Our model explains how the physiological
time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from
ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells

Background

The dynamics of biological systems span a wide range of
temporal and spatial scales. The interactions among
dynamical properties on different scales govern the
overall behavior of the biological system, and thus form
an important area of computational research in biology
[1]. A particularly interesting question in this context is
how the behavior on a slow time scale emerges mechan-
istically from the dynamics on fast time scales. For
example, how do cell population dynamics in tissues,
which may evolve on a time scale of months, years or
even decades, originate from the dynamics of the under-
lying gene regulatory networks, with a time scale of just
minutes to hours?

In this work, we aim at bridging the time scale from
gene regulation to cellular transformation processes
on the tissue or cell population level. We specifically
consider cellular transformation processes based on a
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bistable biochemical switch. Such switches have two
distinct stable stationary states, and the cell initiates a
transformation when the switch changes from one stable
state to the other one. Bistable switches have previously
been used to model a large number of cellular transfor-
mation events, such as progression through cell cycle
arrest in the maturation of Xenopus oocytes [2,3] or
initiation of programmed cell death [4] and cellular dif-
ferentiation [5] in higher organisms. Most models for
these systems are constructed as deterministic models,
and thus an external stimulus is required to induce
changes in the switch’s state. In addition, stochastic
models for biochemical switches within a variety of bio-
logical processes have been formulated, for example the
lac operon in E. coli [6,7], the genetic toggle switch [8],
or a generic phosphorylation/dephosporylation cycle [9].
The typical questions that have been adressed by sto-
chastic switch models are for example the steady state
probability distribution of the different possible states of
the switch [8], or the residence times in these states [9].
In the previously proposed stochastic models of bistable
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biochemical switches, cells are able to switch forth and
back between the possible qualitative states of the
switch. While this is appropriate if the switch serves to
choose a cellular state based on environmental condi-
tions, such as for example in the galactose utilization
network in yeast [10], this feature should not be held up
for transformation processes. In transformation pro-
cesses, subsequent mechanisms, which are not included
in the model description, are in place to ensure irrever-
sibility once the switch changed its qualitative state
from the initial condition. The most obvious example
for such mechanisms is cell death, where the model of
the biochemical switch does not hold anymore once the
cell transitions to the “dead” state.

In this work, we consider irreversible transformation
processes based on a stochastic switch model, which
apparently do not require any external stimulus to be
initiated, where the transition is based only on stochastic
fluctuations. Despite the stochasticity, we see in this
paper that the dynamics of the switch still follow reliable
temporal characteristics. Reliable thereby means that in
a large population of cells, the number of cells that have
already initiated the transformation can be described
deterministically with high accuracy. We propose a gen-
eric transformation process, where a phenotypical
change in the state of a cell is initiated as soon as a bis-
table biochemical switch changes its internal state. In
previous studies, random switching caused by internal
fluctuations is usually attributed to pathological events
[11]. In the mechanism proposed here, random switch-
ing has a regular physiological function.

A striking example for the kind of transformation pro-
cesses we aim to describe is involved in mammalian
oocyte maturation. In mammalian females, all or almost
all of the oocytes that will ovulate through the organ-
ism’s life-span are already present at birth or shortly
thereafter as a population of so-called primordial folli-
cles. Throughout the organism’s reproductive life, folli-
cles undergo the primordial to primary transition, which
marks the start of a development process that will even-
tually lead to either ovulation or removal of the oocyte
through atresia [12,13]. In this way, there is a steady
supply of mature follicles for ovulation, while the pool
of primordial follicles is gradually depleted. The
mechanisms through which the follicle transition is
initiated are largely unknown, although a number of
ovarian factors that may be relevant have been identified
experimentally [14-16]. Importantly, the transition seems
to be regulated locally in the ovary, and not through the
endocrine system [17]. An astonishing observation in
this process is that in one follicle, the transition may
occur already a few months after generation of the pri-
mordial follicle pool, while another follicle may stay sev-
eral decades (for organisms with a sufficiently long
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lifespan) in the resting stage before growth is initiated.
From the medical side, a misregulation of this process is
implicated in premature ovarian failure due to follicle
depletion, which is a major reason for infertility in
human females. By way of a case study, we apply the
proposed transformation mechanism to the problem of
growth initiation in ovarian follicles. Including also cell-
cell interactions supported by experimental evidence, we
obtain a physiologically plausible model for this process,
showing very good agreement with human clinical data
on a time scale of several decades.

Methods

Deterministic model of a bistable switch

The model of a bistable switch that we use is based on a
positive feedback loop between two components. Con-
sider a biochemical reaction network involving the two
molecular species X and Y. Mathematically, the tem-
poral evolution of the amounts of the two species is
described with the ordinary differential equation

h
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x=v1+v2(y)—v3(x)=kl+—hly ——U,X
M/ +y o
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y=v4(x)—v5(y):m—u2y,

where x and y denote the amounts of X and Y, respec-
tively. The network is illustrated in Figure 1. The vector
(x,y)T will be referred to as the microstate of the bio-
chemical reaction system. Ultrasensitivity, which is
required to achieve bistability [2], is generated by the
Hill-type production rates v, and v,. In the sequel, we
will assume that the molecular species X and Y repre-
sent gene transcripts, and the amounts x and y indicate
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Figure 1 Network schematic for the bistable switch model (1).
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the respective transcript copy number. The nominal
parameter values that we use are given in Table 1. For
simplicity, we assume that the parameters are sym-
metric, i.e. Vi = V,, My = M, and u; = u,. The para-
meter values are within the physiological range for
typical gene transcription processes. In particular, the

degradation rate of 0.01 —L- corresponds to a gene
min

transcript half-life time of about 70 minutes. Typical
transcript half-life times in mammalian cells are in a
range from tens of minutes to several hours [18], but
can of course vary significantly depending on the gene
and regulatory influences, with an estimated variation of
200 fold among different genes [19]. The minimal tran-
scription rate of X is given by k; and corresponds to 3.3
transcripts that are produced per hour. The transcrip-
tion rate upon maximal activation is given by V;, and
corresponds to 33 transcripts produced per hour. Upon
maximal activation, this would yield a steady state
mRNA copy number of 55 molecules per cell. The typi-
cal range of mRNA copy numbers in mammalian cells
seems to be on the order of a few to hundreds [20,21].

For two-dimensional systems, it is convenient to check
bistability by considering nullclines in the state space
[22]. With this graphical representation, it is also easy to
evaluate how good the two stable states are actually
separated [23]. The nullclines for the model given in (1),
with nominal parameter values, are depicted in Figure
2A. From the figure, it is clear that there are three equi-
librium points, labelled I, II and III. A stability analysis
of the equilibrium points shows that the deterministic
system described by (1) is bistable, and the correspond-
ing reaction network implements a bistable switch. We
construct a macrostate for this system by defining the
two sets Q. Q,, € R? corresponding to the switch
being off or on, respectively. Qg contains the equili-
brium point I, and Q,,, contains III. For our model, we
define

Q. ={(x,y)e Ri|x+ySL}
Q,, :{(x,y)e Ri|x+y2L}
with suitable parameter L. With model parameters as

given in Table 1, a suitable choice which we will use in
this work is L = 55.

Table 1 Nominal parameter values for the bistable switch
model (1)

Parameter Value Parameter Value
ky 0055 - Vi 055 -1
min ” min
M2 25 h 3
1
Uy 0.01 min

Transcript copy numbers are considered to be dimensionless.
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Stochastic model of a bistable switch

The deterministic model of the bistable switch discussed
in the previous section is suitable to describe the exis-
tence of two distinct macrostates, corresponding to
stable equilibrium points in the model. However, to cap-
ture transitions between these macrostates which are
caused by intrinsic fluctuations, a stochastic model has
to be considered. In a stochastic setting, the amounts of
molecular species may only take discrete values from

the set ﬁ:{(X,Y)T| XeN, Ye NO}. The stochas-

tic state of the switch at time ¢ is given by the discrete
probability distribution p(X, Y, t), which for each micro-
state (X,Y )T e Q gives the probability that the switch

is in the microstate (X, Y )" at time #
p(X,Y,t)=Prob(x(t)=X,y(t)=Y). )

To describe the temporal evolution of the probability
distribution, we use the chemical master equation
(CME) [24]. The reaction network for the bistable
switch is not described with elementary reactions only,
and thus it is not possible to construct the CME accord-
ing to its rigorous derivation [25]. However, a theoreti-
cal investigation by Rao and Arkin [26] has shown that
as an approximation, the propensity functions for state
transitions can be taken from the according determinis-
tic reaction rate laws. Thus, for the bistable switch
described above, we can formulate the CME

5
fJ(X,Y,t)=—2ui(X,Y)p(X,Y,t)+u1p(X—l,Y,t)
i=1 3
+0, (Y)p(X=1,Y,t)+v;(X)p(X+1,Y,t) ®)
0, (X)p(X, Y =1,t)+v5(Y)p(X, Y +1,t)

for (X,Y )T e Q, where the reaction propensities v;,
i = 1,.., 5, are the same expressions as in the determinis-
tic model (1).

In the stochastic model (3), we aim to identify the
qualitative states on and off as in the deterministic
model. For many biochemical systems, the stable equi-
librium states in the deterministic description corre-
spond to peaks in the probability distribution p(X, Y, ¢)
[10], although there are also cases where this is not
true, for example systems where extinction of molecu-
lar species is possible [27]. For the stochastic switch
model (3), simulations suggest that we indeed obtain
two peaks in the probability distribution close to the
stable equilibrium points of the deterministic model
(1) (see Figure 3).

In the stochastic description, we can compute the
probabilities that the switch is in any of its two macro-
states directly from a solution of the CME. Define p,4
(t) and p,,(t) as the probabilities that the switch is off
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Figure 2 Characterisation of the phase space in the bistable switch model (1). A: Phase space diagram for the deterministic model of the
bistable switch. Black lines are nullclines for the variables x and y in the deterministic switch model (1), with their intersections corresponding to
equilibria of the switch. / and /il are stable equilibrium points, I/ is an unstable one. Trajectories converge to either / or /ll, depending on the initial
condition, as shown for the sample trajectories plotted as light blue lines. B: Schematic illustration of the configuration space for the Markov
process (5) describing the cell transformation process. Circular nodes below the dashed line correspond to possible configurations (X; ¥)" of the
switch, and the arrows between the nodes correspond to transitions in the configuration due to reactions. The configurations above the dashed
line are collapsed into the on state, which is assumed to be irreversible due to subsequent transformation processes.
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Figure 3 Steady state probability distribution for the stochastic bistable switch. 500 realizations of the stochastic reaction network model
(3) were generated using the Gillespie algorithm in the stochastic simulation software Dizzy [41,42]. Each realization was for a simulated time of
300 years, and the steady state probability distribution was generated from the samples after discarding a transient phase of 50 years simulated
time, using a total of about 5 - 107 data points.
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and on, respectively. Given a solution of the CME, these
can be computed by summing up the probabilities that
the system is in the corresponding microstates, i.e.
Pon (£) = Z(le)eﬁm p(X,Y,t), and equivalently for
Pog(b).

A transformation process modelled with a stochastic
switch

Cellular transformation processes are often based on a
bistable biochemical or genetic switch. In the initial
state of the cell, the switch would be in the off state.
Switching to the on state implies a significant change in
the amount of an involved signaling molecule, e.g. a
transcription factor. If the on state is maintained for
some time, this change would result in a larger pheno-
typical change of the cell, e.g. through significant changes
in gene expression. The mechanisms that induce this
change are not included in the stochastic switch model,
but from a signaling perspective downstream of it.

Most transformation processes rely on specific exter-
nal stimuli, and the cell will initiate the transformation
upon encountering the required stimulus. There are
however examples where such a stimulus is not strictly
required, and this is the case that we are dealing with in
this paper. Moreover, we will focus on the behavior of
cell populations, studying the problem how the temporal
dynamics of the transformation process evolve in a pool
of many cells.

The basic mechanism that actually triggers the bis-
table switch in our model without an external stimulus
are the intrinsic fluctuations of concentrations in any
biochemical reaction network, that are due to the sto-
chastic nature of chemical reactions. As a rare event,
these fluctuations may become so large that the micro-
state of the system crosses the separatrix between the
domains of attraction in the deterministic system. As a
consequence, the microstate around the other stable
equilibrium point will become strongly attractive, and
the switch will change its macrostate to on with a high
probability. In this paper, we assume that the transfor-
mation is irreversible, which fits well to the process of
follicle growth initiation. Also other processes such as
programmed cell death are irreversible.

The described transformation process is easily mod-
elled as a continuous-time Markov process. If the switch
is in the macrostate off, then we directly use the micro-
states and transition probabilities of the underlying bio-
chemical reaction network to model the transformation
process. To account for the irreversibility of the trans-
formation, all microstates ( X,y )T c ﬁon are collapsed
to one state of the Markov process, labeled with “on” in
Figure 2B, which is an absorbing state. The transitions
of other microstates to the absorbing state are governed
by the propensity functions for the corresponding
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transitions in the underlying biochemical network. The
resulting state space for the Markov process model of
the transformation process is shown in Figure 2B.

In our model of the stochastic switch, the macrostate
off is defined by a compact region in state space. As a
consequence, the Markov model of the considered
transformation process has a finite state space, and can
therefore be treated computationally with standard
approaches. Let P(¢) € R" denote the complete probabil-
ity state vector of the system,

P(t)=(p(0,0,t),p(1,0,t),p(0,1,t),

4
b (L,0,), pon(), @
ui

The master equation can be written as the linear
ordinary differential equation

P(t)=AP(t), (5)

where A € R” * " is the state transition matrix. The
matrix A can be computed directly from the values of
the reaction propensity functions in each microstate
[28]. The differential equation (5) can be solved using
standard tools for numerical integration. For the results
described in this paper, we used the odel5s function
in MATLAB (The MathWorks, Natick, MA) to obtain a
numerical solution of (5).

Results and Discussion

A hypothetical mechanism for oocyte maturation

In this section, we suggest a biochemical mechanism
that offers a molecular explanation for the large deple-
tion times of several decades in the human oocyte pool.
The model is based on experimental evidence obtained
in a very informative series of studies by Skinner and
colleagues (see [13] for a review), where the influence of
several ovarian factors on the primordial to primary
transition as well as some interactions between them
have been studied. Because a positive feedback loop is
necessary for a bistable switch [29], we have specifically
searched for such an interconnection.

Primary ovarian follicles are composed by three main
cell types: a single oocyte as the main component, and
granulosa and theca cells surrounding the oocyte [13].
Experimental evidence suggests a positive feedback cir-
cuit involving two ovarian factors that are relevant in
the primordial to primary transition: the factor KIT
ligand (KITL) is produced by granulosa cells and stimu-
lates both the oocyte and surrounding theca cells to
promote follicle development. Moreover, KITL stimu-
lates the production of both keratinocyte growth factor
(KGF) and hepatocyte growth factor (HGF) in the sur-
rounding theca cells. KGF and HGF themself stimulate
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the production of KITL in the granulosa cells, thus pro-
viding a positive feedback loop [30]. Moreover, the
oocyte of primordial and developing follicles produces
basic fibroblast growth factor (bFGF), which acts on sur-
rounding granulosa cells and has been shown to
increase the expression of KITL [16].

These pieces of experimental evidence thus support
the hypothetical mechanism that is shown in Figure 4.
Our simplistic mathematical model presented in (1) and
Figure 1 can be used to describe this mechanism, where
the variable x represents granulosa-derived KITL activity
and y represents theca-derived KGF and HGF activity.
The reaction v, describes the influence on KITL expres-
sion of oocyte-derived bFGF, which is here assumed to
be constant. The reactions v, and v, arise from the posi-
tive feedback interconnection, whereas v; and v;
describe a constitutive degradation of KITL, KGF and
HGEF.

The stochastic switch generates reliable long-term
behavior

The differential equation (5) that governs the initiation
probabilities of the irreversible transformation process is
a linear ordinary differential equation, so in principle it
can be solved analytically. Due to the size of the system
(n = 1653 in this example), this is however not feasible.
Yet, we can characterize the probability that a given cell
has initiated the transformation process by the explicit
formula "

Pon () =1—cre™" + ZCi (t)e ™, (6)

i=2

where ¢; > 0,0 <A; < Re (A,) for i = 2, ..., n, and the ¢;
() are polynomials in ¢. The mathematical derivation of
(6) is provided in the appendix.

From considering the general form of the analytical
solution given in (6), we obtain two important conclu-
sions about the stochastic transformation process.
First, we observe that the probability for a given cell to
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initiate the transformation tends to 1 as time increases.
Second, because A; is the dominant decay rate, for
larger times ¢ > 0 the probability of not having
initiated the transformation can be approximated by
Pogr () =1=py, () = cie™', a simple exponential
decay. For the biochemical parameter values given in
Table 1, the numerical solution for p,,(¢) is shown in
Figure 5A. For these parameter values, which are in
the physiological range for the considered biological
processes, we indeed get to a time scale of years to
decades in the probability of the transformation event,
with a half-life time of about 5.9 years. Let us now
move to the population level, and consider a pool of
cells, each of them being subject to the considered
transformation process with a bistable switch. In the
first step, we make the simplistic assumption that no
interactions among the cells are taking place, so indivi-
dual transformations are probabilistically independent
events. The number of remaining cells N,(f) can easily
be characterized by a binomial distribution as

P(Nr(t)zN):(ZoJ(l—pm(t))Np,m(t)N“_N, ?)

where Nj is the initial number of cells in the pool.
The properties of the binomial distribution give the
expected number of cells remaining in the pool as

E[N, (1)]=No (1= py (1)). ®)

The probability distribution P (N,(t) = N) for the
population size in the transformation process considered
in this paper is shown in Figure 5B as a function of both
cell number N and time ¢. The number of initial cells
Ny = 10° was chosen from the reported range of ovarian
follicles, 7 - 10° to 2 - 10° in human females at birth
[31]. For each point in time, the distribution has a
very sharp peak, which indicates that the average value
E[N,(¢)] is a reliable prediction for the number of cells

Oocyte

bFGF

Figure 4 Hypothetical biochemical network for the primordial to primary transition in ovarian follicles.
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Figure 5 Dynamical characteristics of the stochastic bistable switch on the single cell level and the population level. A: Probability of
transformation event p,,(t) B: Population size probability distribution over time. C: Probability density function of the depletion time T,.
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that have already undergone the transformation at a
given time.

A relevant characteristic of the considered process is
the time at which the initial cell population is
depleted, i.e. when nearly all cells have undergone the
transformation. To make this notion precise, we intro-
duce the depletion number N, The depletion time T,
is defined as the smallest time ¢ such that N,.(tf) < N,
i.e. only N, cells are remaining in the initial popula-
tion. For the process of follicle growth initiation, we
use N; = 10°, which has been considered to mark the
onset of menopause [32].

The cumulative probability distribution function for
the depletion time 7, is computed from the distribution
obtained in (7) as

P(T;<t)=P(N,(t)<SN,)=

N<N,

The probability density function for the depletion time
is computed by taking the derivative of the cumulative
probability distribution function (9). The resulting prob-
ability density function for the depletion time in follicle
growth initiation is shown in Figure 5C. From the
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density function, the expected value and the standard
deviation are obtained as E[T,;] = 59.1 years and

\/E [ T; ] -E[T, ]2 = (.27 years, respectively.
The expected value for T,; can also be computed by

solving 1-p,,(T;) =ﬁ—g. Using (6), it can thus be

approximated by E[T,;]= ﬁln% , where A; is the
dominant decay rate of the process.

Next, we compare the computed statistical character-
istics of the follicle depletion process to medical data.
Explicit follicle counts are only sparsely available.
However, the available pieces of data indicate that
fluctuations in actual follicle numbers are larger than
predicted by our model [33]. Concerning the depletion
time, a recent medical study suggests an average age of
51.1 years for the onset of menopause, with a standard
deviation of 3.8 years [34]. Our model predicts a deple-
tion time of T,; = 59.1 years, which is reasonably close
to the experimentally observed depletion time. However,
the standard deviation of 0.27 years in our model is sig-
nificantly less than observed from medical data. In sum-
mary, even though our model is based on a highly
stochastic process, the analysis reveals that it leads to
much more reliable temporal characteristics than
observed in the real system. This indicates that stochas-
tic effects alone may not be sufficient to explain the
heterogeneity observed in the follicle depletion process.

An alternative explanation would be by heterogeneous
parameter values among individual organisms. This
explanation is also supported by statistical analyses of
medical data [34], where it is suggested that the onset of
menopause is largely based on genetic factors, which
would be related to parameter values in our model. To
investigate this possibility, we have computed
the expected depletion times for different parameter
values. The computation was based on the eigenvalues
of the transition matrix A and the approximation

E[T;]= ﬁln[[:%‘ The results are given in Table 2.

From these results, we note that even small parameter
variations in the model of the bistable switch lead to

Table 2 Expected depletion times (years) in the single
cell model (5)

Factor 0.8 0.9 0.95 1.05 1.1 13
Param.

ky 1300 254 120 31 16 19

Vis 1720 322 135 29 15 22

Urs 04 4.1 15 248 1010 12-10°
M., 02 2.1 10 418 3410 2010
h 06 63 20 163 420 96 -10°

Expected depletion times (years) in the single cell model (5) for multiplicative
variations in single parameters. For simplicity, we always assume V; = V,, u; =
Uy, and My = M,.
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very large variations in the expected depletion time.
This is not realistic for a biological system, and in the
following section we explore mechanisms to increase
the robustness of the depletion time with respect to
parameter variations.

Increased robustness by interactions on the population
level

In the last section, we have characterized the properties
of the transformation process based on a bistable switch,
with the depletion time of a pool of cells subject to the
transformation as characteristic output of the model.
We have shown that the proposed model produces reli-
able depletion times, in the sense of a small standard
deviation, for fixed values of the biochemical para-
meters. However, we have also observed that the average
depletion time in the basic model is quite sensitive to
variations in the biochemical parameters. Clearly, this
large sensitivity is not acceptable in a model that should
be a meaningful representation of the primordial to pri-
mary follicle transition. In this section, we propose an
additional mechanism that reduces the sensitivity of the
average depletion time significantly.

The additional mechanism is based on the experimen-
tal observation that follicles in later stages of develop-
ment actively suppress the primordial to primary
transition in resting follicles [13]. The inhibition of folli-
cle growth initiation is mediated by the Anti-Miilerian
hormone (AMH), which is produced by growing follicles
and interferes with stimulatory signals by KITL, bFGF,
and KGF [35]. Although AMH is known to signal via
SMAD proteins [36], the molecular mechanisms of folli-
cle growth inhibition by AMH seem to be unknown. To
include the inhibitory effect into the simplistic switch
model (1), we assume that the rate of KITL production
in primordial follicles is reduced with an increasing
number of growing follicles. This is achieved by chan-
ging k; in the original model given in (1) from a con-
stant parameter to the expression

fy (ny) = FLmaxn (10
Ky+ny

where ki ,,,,, is the maximal production rate of KITL,
ny is the number of growing, AMH producing follicles,
and K, is an additional parameter. While follicle devel-
opment is a complex process with many intermediate
stages [31], in this analysis we use a simple two-state
population model, where n; denotes the number of pri-
mordial follicles, and 7, the number of growing follicles.
The assumptions of the model are that primordial folli-
cles initiate growth with a rate as determined by 1, in
(6). Due to k; depending on n, as defined in (10), we
obtain a dependency of A; on n,. Growing follicles are
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assumed to stay in this stage for a constant amount of
time ¢, after which they leave the pool either through
ovulation or atresia. From these specifications, one can
derive a model given by the system of delay-differential
equations

iy () =2 (n, (£))ny (£)

iy (6) =2y (ny ())ny (£) =2 (ny (e =2))ny (£ =17), a
where 4;(n,) is the decay rate computed from the
transition matrix A(n,) in (5), with k;(n,) as in (10).
Using the parameters in Table 3, the population model
given by (11) now predicts a depletion time of T, =
50.0 years, which is almost equal to the depletion time
suggested by the medical study [34]. The development
of the ovarian follicle pool over time, as predicted by
the model in (11), is shown in Figure 6. The prediction
is compared to clinical data of follicle numbers at differ-
ent ages taken from [37]. Although the parameters have
only been adjusted to the depletion time, the predicted
time course is reasonable close to the clinical data. In
particular, the proposed population model (11) intrinsi-
cally captures the previously observed increase in the
follicle depletion rate at an age of approximatively 38
years [37]. In order to investigate the sensitivity of the
extended model to variations in the biochemical para-
meters, we have computed again the expected depletion
times for different parameter values. The results are
given in Table 4. The variation in the depletion time is
significantly reduced, compared to the model (5), where
follicle interactions are neglected. It should also be
pointed out that the depletion time is quite insensitive
towards variations in the two parameters K,, and 7
which were newly introduced in the population model.
This result illustrates that the robustness of the deple-
tion time with respect to parameter variations may be
substantially increased by adding interactions among
individual follicles to the proposed model of the trans-
formation process.

Conclusions

In this paper, we deal with a fundamental question in
the development of multicellular organisms: How can
biochemical reactions and genetic mechanism acting on
the scale of minutes in individual cells generate

Table 3 Nominal parameter values for the population
model (11)

Parameter Value Parameter Value

1 1
K1 max 006 Vo 055 —
M 5 25 h 3
Urs 001 L K, 8210
T 04 years
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dynamics with characteristic times of years to decades
on the tissue level? As a possible mechanism to achieve
this, we propose a generic transformation process based
on a bistable stochastic switch. From the underlying
genetic interactions and biochemical reactions, the pro-
cess can be modelled as a continuous-time Markov pro-
cess. We show that the proposed stochastic mechanism
generates reliable long-term behavior on the population
level, with cells undergoing the transformation with an
exponentially decaying rate. Thereby, the decay rate is
equal to the dominant eigenvalue of the transition
matrix describing the underlying biochemical network.
Due to bistability of the considered switch, this domi-
nant eigenvalue corresponds to very slow dynamics,
thus leading to the very long timescale as observed in
the simulations. We pose the hypothesis that a biologi-
cal instance of this mechanism is present in the develop-
ment of ovarian follicles. To describe this process, we
constructed a simple model of a bistable switch in the
primordial to primary transition for ovarian follicles.
The model is based on experimentally determined fac-
tors and their interactions in the different cell types
constituting the ovarian follicles. Although it is not
assured that a bistable switch in ovarian follicles will
indeed be based on the factors that we have used here,
the basic mechanism would work equivalently well with
other factors.

Despite its simplicity, our model explains well how the
long-term characteristics of follicle development may
reliably be generated by biochemical reactions occurring
on much shorter time scales. Keeping the model simple
serves two purposes: first, it shows that the dynamics of
follicle growth initiation can be generated by a quite
simple mechanism. Clearly, additional pathways and reg-
ulatory feedback interactions that we have not included
in this model can be expected to be present in the sys-
tem. These may serve to increase robustness of the net-
work, or to provide additional inputs to control the
transition rate, e.g. for the endocrine system. Second,
the simplicity of the model allows us to solve the chemi-
cal master equation for the network numerically, and
thus to obtain a good quantitative description of the
model behavior.

As a possible shortcoming of the basic model on the
single cell level, we observe an unrealistic large sensitiv-
ity of the follicle depletion time with respect to para-
meter variations. By adding the experimentally
supported inhibition of follicle growth initiation by
later-stage growing follicles, the sensitivity of the deple-
tion time could be reduced significantly. Apart from the
inhibition included in the model, other interactions
among individual follicles seem to play a role in the pri-
mordial to primary transition [38]. We envision that the
inclusion of more regulatory interactions may further
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Figure 6 Evolution of follicle number. Model predictions from (11) (/ine) vs. clinical data from [37] (crosses).

decrease the sensitivity of the depletion time with
respect to parameter variations to a physiologically plau-
sible level.

Appendix: Computation of the transition
probability
In this section, we prove that the probability that a
given cell has undergone the considered transformation
process is given by p,,(¢) as in (6). The proof is based
on considering the solution of the underlying CME (5).
Since the last microstate is an absorbing state of the
Markov process, (5) can be written as

Table 4 Expected depletion times (years) in the
population model (11)

Factor 0.8 0.9 0.95 1.05 1.1 1.3
Param.

kq 450 120 74 37 29 15
Vi >500 120 78 36 27 14
U 94 18 28 120 330 >500
M; > 6.8 14 24 160 >500 >500
h 9.5 20 31 88 160 >500
K, 56 53 52 49 48 44

T 45 48 49 51 52 57

Expected depletion times (years) in the population model (11) for
multiplicative variations in single parameters.

pP= [ Ares 0 ]P, (12)
A gbs 0

where A,,, € R” - D > - degcribes the interactions
among the non-absorbing states, and a,;, € R' * -1
describes the transition propensities to the absorbing
state.

Let us first derive some essential properties of the
matrix A,.,. Since A is a stochastic matrix, we have

n—1
|Aji|S —Ajis

j=1,j#i

(13)

fori=1,..,n-1ie. A, is diagonally dominant.
Thus, Gersgorin’s theorem [39] asserts that all eigenva-
lues of A,., have a non-positive real part. Even more,
since a,;s is non-zero, (13) holds with a strict inequality
for at least one i. Thus, by Theorem 10.7.2 in [39], all
eigenvalues of A,,, have negative real part. By the prop-
erties of the considered biochemical network, A,,, is
irreducible, and its off-diagonal elements are non-nega-
tive. From Corollary 4.3.2 in [40], it follows that A,,, has
an eigenvalue A, € R with algebraic multiplicity 1 and a
strictly positive corresponding eigenvector v; such that
Re A <A, for all A = A, in the spectrum of A,,,.
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Denoting P,., = (P, ..., P,.;)" we have Prev =A,,,Pry -
From the previously derived properties of the matrix
A,er» the general solution of this differential equation is

given by

S
P, (1) =av,e™ + 2 v (t)eht,

i=2

(14)

where ¢, (t) are polynomials in t and g is a constant
coefficient, depending on the initial condition P,,(0).
The condition P,.,(f) = 0 for all ¢ implies that G>0.
For a non-negative initial condition P,,,(0) with at least
one positive element, we have g > (0. The transition
probability p,,(t) is computed as

pon(t)=l_1TPrev(t)

2 (15)
=1-ae™' + zci(t)e’m,

i=2

where a=a1"v, >0 and ¢, (t)=¢,(t)1"v;,1=(1,..,1)".
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