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Abstract: We extend the notion of flat inputs, which we previously introduced in the SISO
case, towards non-linear MIMO systems. For MIMO systems, we have to distinguish two cases
for differential flatness, corresponding to feedback-linearizability either by a static or a quasi-
static feedback. For the first case, the construction of flat inputs can be solved easily by means
of the observability codistribution and indices. The second case remains an open problem,
and we illustrate with an example that flat inputs can even be constructed for non-observable
systems. In addition, we also discuss the problem of realizing flat inputs as physical actuators
in mechanical systems. Copyright c© 2010 IFAC.

1. INTRODUCTION

The concept of differential flatness of control systems has
been introduced by Fliess et al. (1992, 1995) and found
great attention in control theory (Martin et al., 1997;
Rothfuß, 1997; Delaleau and Rudolph, 1998; Fliess et al.,
1999; Martin et al., 2001; Hagenmeyer and Delaleau, 2003;
Sira-Ramirez and Agrawal, 2004; Lévine, 2009). Several in-
dustrial control applications profited from the application
of flatness-based controller design (Rudolph, 2005). Design
methods based on the flatness property usually require to
determine a so-called flat output: a function of the system’s
state and possibly inputs such that the state variables and
the input trajectories can be parametrised in terms of the
flat output trajectory and its derivatives. This property
makes the flat output a convenient variable for trajectory
planning with feedforward control (Rothfuß et al., 1996).
For SISO systems, a flat output is any output yielding
a relative degree equal to the system’s order, thus mak-
ing the system amenable to exact feedback linearization
(Jakubczyk and Respondek, 1980; Isidori, 1995).

As a dual perspective for the flat output, we have recently
introduced the concept of flat inputs (Waldherr and Zeitz,
2008). The construction of a flat output can be understood
as a sensor placement problem in order to achieve differ-
ential flatness of the resulting input–output system. Dual
to this, we have formulated the construction of a flat input
as an actuator placement problem in order to achieve the
same property. The motivation to construct a flat input
for a given output is that with such an input, the tracking
problem for the given output can be solved without the
consideration of any internal dynamics (Graichen et al.,
2005). In the SISO case, it turned out that a flat input
can be constructed if and only if the system under con-
sideration satisfies an observability condition. The vector
field associated to the flat input, representing an actuator
to be implemented, can be computed from a system of
linear algebraic equations, and is unique up to a scaling
function.

In this paper, we extend the concept of flat inputs towards
non-linear MIMO systems. For systems which admit the
transformation to an observable form (Krener and Respon-
dek, 1985), flat inputs can be determined similarly to the
SISO case. However, in the MIMO case, observability is
not necessary for the existence of flat inputs. We provide
an example system showing that flat inputs may even
exist for non-observable systems in the MIMO case, and
that this is related to exact linearization by a quasi-static
feedback transformation.

In contrast to the fictitious flat output variables, a flat
input must be realized as a physical actuator such that the
considered system becomes differentially flat (Waldherr
and Zeitz, 2008; Zeitz, 2010). In this paper, we discuss the
physical realizability of flat inputs in the case of mechan-
ical systems. Mechanical systems are problematic with
respect to realizability of generic actuators constructed
in state space, since they are derived from second order
constitutive equations and thus obey a specific structure in
state space form. To deal with this problem, we propose an
algebraic test to check physical realizability of the actuator
for the flat input.

The paper is structured as follows. In Section 2, the flat-
ness properties of non-linear MIMO systems are briefly
summarized. The main result for flat inputs in the MIMO
case is presented in Section 3 and is illustrated by ex-
amples. Finally, the realizibility problem of flat inputs as
actuators in mechanical systems is discussed in Section 4.
We conclude with Section 5.

2. FLATNESS OF MIMO SYSTEMS

Consider the non-linear control system
ẋ = F (x, u1, . . . , up), (1)

with state x ∈ Rn, input u ∈ Rp, and rank ∂F
∂u = p.

Whereever derivatives of the inputs occur, we assume
that the inputs are sufficiently smooth. The system (1)
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is said to be differentially flat, if there exist p outputs
z = (z1, . . . , zp)T which satisfy the following conditions
(Fliess et al., 1992, 1995).

• The outputs zi, i = 1, . . . , p, are determined by the
state x, the input u, and a finite number of input
derivatives:

z = λ(x, u, u̇, . . . ). (2)
• The state x and input u can be parametrized (at least

locally) by the outputs zi, i = 1, . . . , p, and a finite

number of output derivatives
(k)
zi , k = 1, . . . , bi, with∑p

i=1 bi ≥ n:

x = Ψx(z1, . . . ,
(b1−1)
z1 , . . . , zp, . . . ,

(bp−1)
zp ) (3)

u = Ψu(z1, . . . ,
(b1)
z1 , . . . , zp, . . . ,

(bp)
zp ). (4)

These equations define the inverse system for (1),
i.e. the state and input are given in terms of the
output trajectories, assuming that the output signals
are sufficiently smooth.
• The outputs zi, i = 1, . . . , p are differentially indepen-

dent, i.e. they do not satisfy a differential equation of
the form

ϕ(z, . . . ,
(c)
z ) = 0. (5)

The condition (5) is usually hard to check, but is always
satisfied if dim z = p and conditions (3) and (4) hold.

In the above flatness conditions, we can distinguish two
cases concerning the order of the output derivatives in the
parametrizations (3) and (4). The first case is under the
condition that

p∑
i=1

bi = n, (6)

while in the second case
p∑
i=1

bi > n. (7)

2.1 Case I:
∑p
i=1 bi = n

In the first case (6), the system (1) can be brought into
a standard linear form via a static state-dependent input
transformation. To this end, we introduce the new inputs
wi, i = 1, . . . , p. Then, the input

u = Ψu(z1, . . . ,
(b1−1)
z1 , w1, . . . , zp, . . . ,

(bp−1)
zp , wp) (8)

transforms the original system (1) to the MIMO Brunovsky
normal form

(bi)
zi = wi, i = 1, . . . , p, (9)

yielding p decoupled integrator chains of lengths bi. In
the Brunovsky form, control problems such as trajectory
tracking can be solved easily.

Of particular interest in our study are input-affine systems
with an output, described by the non-linear differential
equation

ẋ = f(x) +
p∑
i=1

gi(x)ui

yi = hi(x), i = 1, . . . , p,

(10)

with gi(x) the input vector fields and outputs yi ∈ R,
i = 1, . . . , p. For such systems, the notion of the vector
relative degree will be useful in this study.
Definition 1. (Isidori (1995)). The system (10) has a vec-
tor relative degree locally at x0 ∈ Rn, defined as the p–
tuple r = (r1, . . . , rp), if LgjL

k
fhi(x) = 0 for j = 1, . . . , p,

i = 1, . . . , p, k = 0, . . . , ri−2, and all x in a neighbourhood
of x0, and the (p× p) matrix

A(x0) =

Lg1Lr1−1
f h1(x0) · · · LgpL

r1−1
f h1(x0)

· · · · · · · · ·
Lg1L

rp−1
f hp(x0) · · · LgpL

rp−1
f hp(x0)


is non-singular.

If the output functions hi(x) of the system (10) are such
that the system has a vector relative degree with

p∑
i=1

ri = n, (11)

then the outputs yi are flat outputs. For a given control
system without outputs, there exists a complete answer to
the question of when output functions satisfying condition
(11) exist, involving involutivity conditions of certain
distributions generated from the vector fields f and gi
(Jakubczyk and Respondek, 1980; Isidori, 1995).

In the case (6), flatness is also related to observability. Note
that in this case, we do not need the dependence on the
input u in the definition (2) of the flat output z = λ(x).
Considering the derivatives of flat outputs zi = λi(x), we
find that

zi = λi(x)
żi = Lfλi(x)

...
(bi−1)
zi = L

(bi−1)
f λi(x),

(12)

for i = 1, . . . , p. For ease of notation, let us rewrite (12) as
[b−1]
z = q(x). (13)

Thereby, the function q is the observability map of the
system (10) with respect to the outputs zi, i = 1, . . . , p.
Since the zi are flat outputs, we also have the state
parametrization (3) as the inverse observability map Ψx =
q−1, and the system (10) is observable through the outputs
zi. In this case, observability is independent of the actual
input signal.

2.2 Case II:
∑p
i=1 bi > n

We next consider the case (7), in which the system (1) can
not be transformed to a linear system via a static feedback
transformation. However, it is possible to apply a quasi-
static feedback transformation (Delaleau and Fliess, 1992;
Rothfuß, 1997; Delaleau and Rudolph, 1998). To this end,
one defines appropriate integers di ≥ 0, i = 1, . . . , p, such
that

p∑
i=1

(bi − di) = n. (14)

As in the first case, we introduce the new inputs wi,
i = 1, . . . , p. Using the input
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u = Ψu(z1, . . . ,
(b1−d1−1)

z1 , w1, . . . ,
(d1)
w1 , . . . ,

zp, . . . ,
(bp−dp−1)

zp , wp, . . . ,
(dp)
wp ),

(15)

the system (1) is transformed to the Brunovsky normal
form

(bi−di)
zi = wi, i = 1, . . . , p, (16)

yielding p decoupled integrator chains of length bi − di.
Thus, the flat outputs are also in this case useful to solve
typical control problems like trajectory tracking. However,
in contrast to the first case, necessary and sufficient
conditions for existence of flat outputs have only been
proposed recently, and checking these conditions requires
the integration of differential forms (Lévine, 2009).

In the case that
∑p
i=1 bi > n, we do not get a similar

relation between flatness and observability as in the first
case. In contrast to the previous case, we may need an
input dependence in the definition (2). Let us consider
flat outputs zi = λi(x, u, u̇, . . . ), i = 1, . . . , p and the map
defined by

zi = λi

żi = LFλi +
∂λi
∂u

u̇+ · · ·
...

(bi−1)
zi = L

(bi−1)
F λi +

∂L
(bi−2)
F λi
∂u

u̇+ · · · ,

(17)

or shortly
[b−1]
z = q(x, u1, . . . ,

(d1−1)
u1 , . . . , up, . . . ,

(dp−1)
up ). (18)

In this case, the map q transforms into RN with N =∑p
i=1 bi = n+

∑p
i=1 di, with integers di as defined in (14).

In contrast to the first case, one can in general not compute
the state parametrization Ψx in (3) independently of the
input parametrization Ψu in (4). Thus, observability of
the system (1) through the flat outputs (2) will in general
depend on the applied input signal.
Example 1. In order to illustrate the input dependency of
observability, the flat non-linear system with n = 3 and
p = 2 is considered:

ẋ1 = u1 z1 = x1

ẋ2 = x3u1 z2 = x2

ẋ3 = u2.

(19)

For this system, the map q defined in (18) has the form
z1 = x1, z2 = x2

ż1 = u1, ż2 = x3u1,
(20)

with b1 = b2 = 2 and d1 = 1, d2 = 0. The state
parametrization Ψx is given by

x1 = z1
x2 = z2

x3 =
ż2
ż1

(21)

and requires u1 = ż1 6= 0. The latter condition is also
necessary for the observability of (19) by the flat outputs
z1 and z2. Therefore, the state parametrization Ψx in (21)
depends partly on the input parametrization Ψu given by

u1 = ż1

u2 =
z̈2ż1 − ż2z̈1

ż2
1

.
(22)

3. FLAT INPUTS FOR MIMO SYSTEMS

As a complementary perspective to the flat outputs dis-
cussed in the previous section, we consider the problem
of finding flat inputs in the MIMO case. This extends our
previous results on flat inputs in the SISO case (Waldherr
and Zeitz, 2008) towards MIMO systems. Since this is a
problem of actuator design, it is reasonable to restrict the
discussion to input affine systems of the form (10).

For the definition of flat inputs, consider the observed
system

ẋ = f(x)
yi = hi(x), i = 1, . . . , p,

(23)

with x ∈ Rn and each yi ∈ R. Flat inputs are defined in
terms of actuators or vector fields γi(x) that complement
the system (23) to a differentially flat system. As in the
previous section, we have to distinguish the two cases (6)
and (7).

3.1 Flat inputs in Case I

In the first step, we will restrict the discussion to the first
case (6) introduced in Section 2. In this case, flatness of
input affine systems (10) can be treated within the classical
framework of geometric nonlinear control. Then, we can
use the following definition of flat inputs for the system
(23).
Definition 2. If there exist p vector fields γj(x), j =
1, . . . , p such that the MIMO system

ẋ = f(x) +
p∑
j=1

γj(x)vj

yi = hi(x), i = 1, . . . , p

(24)

locally has a vector relative degree r = (r1, . . . , rp) satisfy-
ing

∑p
i=1 ri = n, then the signals vj are called flat inputs

with input vector fields γj(x).

The computation of vector fields γj(x) for a flat input will
be based on the notion of the observability codistribution
and the observability indices, which are defined in the
following.
Definition 3. (Krener and Respondek, 1985). The system
(23) is said to have observability indices κ = (κ1, . . . , κp)
at x0 ∈ Rn, if

∑p
i=1 κi = n, κi ≥ 0, i = 1, . . . , p, and there

exists a neighbourhood X of x0 such that the observability
codistribution

dOκ = span
{
dLjfhi, 1 ≤ i ≤ p, 0 ≤ j ≤ κi − 1

}
. (25)

is of constant dimension equal to n in X .

Note that, according to this definition, the observability
indices of a given system are not unique. In fact, there
may be different p–tuples κ, even when allowing reordering
of the outputs, such that dOκ is of dimension n, see also
Example 2 below.

If the system (23) has observability indices κ, we can define
p vector fields τk(x), k = 1, . . . , p as solutions of the pn
equations

LτkL
r
fhi(x) = 0 for 0 ≤ r ≤ κi − 2

LτkL
κi−1
f hi(x) = δik

(26)
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for i = 1, . . . , p, where δik is the Kronecker symbol. Due to
the dimension condition on dOκ, the vector fields τk(x) as
solutions of (26) are unique and correspond to the κ1-th,
(κ1 +κ2)-th, . . . , n-th columns of the inverse observability
matrix (dq(x))−1. The result on flat inputs for the observed
system (23) is then as follows.
Theorem 4. If the system (23) has observability indices κ,
then it has flat inputs vj , j = 1, . . . , p with associated
input vector fields γj(x) satisfying

γj(x) =
p∑
k=1

αkj(x)τk(x), j = 1, . . . , p, (27)

where τk(x), k = 1, . . . , p are the unique solutions of (26)
and the αkj(x) are arbitrary scalar functions of the state
x such that the matrix

A(x) =

(
α11(x) · · · α1p(x)
· · · · · · · · ·

αp1(x) · · · αpp(x)

)
(28)

is non-singular.

Proof. To prove that the system (24) has a vector relative
degree satisfying condition (11), we make use of the fact
that the vector relative degree is invariant under coor-
dinate transformations (Isidori, 1995). Let us introduce
coordinates zij , i = 1, . . . , p, j = 1, . . . , κi, which are
computed from x as

zij = Lj−1
f hi(x).

We denote this transformation by z = Φ(x). Since the
observability codistribution dOκ has dimension n, Φ is
a local diffeomorphism and can be used to transform
coordinates. Using the definitions (26) and (27) of the
τk(x) and the γj(x), respectively, the dynamics of the
system (24) in z–coordinates write as

żi1 = zi2
...

żiκi = Lκif hi(x) +
p∑
j=1

p∑
k=1

αkj(x)LτκiL
κi−1
f hi(x)vj

= Lκif hi(Φ
−1(z)) +

p∑
j=1

αij(Φ−1(z))vj ,

(29)

for i = 1, . . . , p. Obviously, the system (29) has a vector
relative degree r = κ which satisfies condition (11). Thus
the vj , j = 1, . . . , p, with γj(x) according to (27), are flat
inputs for the system (24).

Note that the state x and the input v of the flat system
(24) can be parametrized through the measured output y
according to (3) and (4) with

x = Φ−1(y1, . . . ,
(κ1−1)
y1 , . . . , yp, . . . ,

(κp−1)
yp )

v = Ψv(y1, . . . ,
(κ1)
y1 , . . . , yp, . . . ,

(κp)
yp ).

(30)

Example 2. We start with a linear example of order n =
5 with p = 2 outputs, which also illustrates the non-
uniqueness of the observability indices. Let the observed
system be given by

k1 d1
m1 k2 d2

m2 k3 d3

q1 q2

Fig. 1. Mechanical system with two coupled masses

ẋ1 = x2 y1 = x1

ẋ2 = x3 y2 = x4

ẋ3 = 0
ẋ4 = x5

ẋ5 = x2 + x3.

(31)

A straightforward calculation confirms that the tuple κ =
(3, 2) are observability indices for (31), giving rise to the
observability codistribution

dOκ = span {dx1, dx2, dx3, dx4, dx5} ,
which is of dimension 5. In this case, the solution for (26) is
obtained as τ1 = ∂

∂x3
and τ2 = ∂

∂x5
. Choosing the matrix

A(x) in (28) as identity, we obtain the differentially flat
MIMO system

ẋ1 = x2 y1 = x1

ẋ2 = x3 y2 = x4

ẋ3 = v1
ẋ4 = x5

ẋ5 = x2 + x3 + v2

(32)

with flat inputs v1 and v2, and vector relative degree
r = (3, 2).

However, the tuple κ̃ = (1, 4) are also observability indices
for (31), giving rise to the observability codistribution

dOκ̃ = span {dx1, dx4, dx5, dx2 + dx3, dx3} .
The corresponding solution for (26) is now given by τ̃1 =
∂
∂x1

and τ̃2 = − ∂
∂x2

+ ∂
∂x3

. Again choosing A(x) as identity,
we now obtain the system

ẋ1 = x2 + ṽ1 y1 = x1

ẋ2 = x3 − ṽ2 y2 = x4

ẋ3 = ṽ2
ẋ4 = x5

ẋ5 = x2 + x3

(33)

with flat inputs ṽ1 and ṽ2, and vector relative degree
r = (1, 4). Note that the two cases are structurally different
in that they cannot be transformed one into the other by
a suitable choice of the matrix A(x).

Example 3. Consider the mechanical system shown in
Figure 1. We assume that the masses are m1 = m2 = 1,
non-linear springs generating a force proportional to the
cube of the displacement, and linear damping elements.
The constitutive equations are given by

q̈1 = −k1q
3
1 − d1q̇1 − k2(q1 − q2)3 − d2(q̇1 − q̇2)

q̈2 = −k2(q2 − q1)3 − d2(q̇2 − q̇1)− k3q
3
2 − d2q̇2.

(34)

To derive a state space representation, set x1 = q1, x2 =
q2, x3 = q̇1, and x4 = q̇2. The state space equations are
then given by
ẋ1 = x3

ẋ2 = x4

ẋ3 = −k1x
3
1 − d1x3 − k2(x1 − x2)3 − d2(x3 − x4)

ẋ4 = −k2(x2 − x1)3 − d2(x4 − x3)− k3x
3
2 − d2x4.

(35)
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Taking the positions as outputs, i.e. y1 = x1 and y2 = x2,
the system (35) has observability indices κ = (2, 2), with
the observability codistribution

Hκ = {dx1, dx2, dx3, dx4}. (36)
The vector fields τ1,2 are computed by use of (26) as
τ1(x) = ∂

∂x3
and τ2(x) = ∂

∂x4
. For A(x) in (28) as identity,

the system (35) has flat inputs given by controlled forces
v1 and v2 acting on the masses m1 and m2, respectively.

3.2 Flat inputs in Case II

We have seen in Section 2 that flatness can either cor-
respond to feedback-linearizability by a static feedback,
namely in the case that

∑p
i=1 bi = n, or to feedback-

linearizability by a quasi-static feedback, where
∑p
i=1 bi >

n. However, the systems constructed by addition of flat in-
puts as in Theorem 4 are always systems where

∑p
i=1 bi =

n. Thus, Theorem 4 still leaves a gap in the construction
of flat inputs, since it may be possible to construct flat
inputs which fall in the second case even for systems
not satisfying the condition in Theorem 4. The following
example discusses such a case.
Example 4. Consider the linear observed system with n =
3 and p = 2 given by

ẋ1 = 0 y1 = x1

ẋ2 = 0 y2 = x2

ẋ3 = 0.
(37)

Clearly, system (37) does not have observability indices.
However, consider the input vector fields γ1(x) = ∂

∂x1
+

x3
∂
∂x2

and γ2(x) = ∂
∂x3

, giving rise to the non-linear
MIMO system

ẋ1 = v1 y1 = x1

ẋ2 = x3v1 y2 = x2

ẋ3 = v2.

(38)

The system (38) is the same as in Example 1 and has
already been shown to be flat. To conclude, the observed
system (37) has flat inputs v1, v2 with the associated vector
fields γ1(x) and γ2(x), even though it is not observable.
However, in this example, the constructed MIMO system is
subject to singularities in the state and input parametriza-
tions.

Example 4 shows that the construction of flat inputs in
the MIMO case does not necessarily require observability
of the original system. It is thus still an open question
what might be necessary conditions for the existence of
flat inputs in the MIMO case, and how to determine the
associated input vector fields.

4. REALIZABILITY OF FLAT INPUTS IN
MECHANICAL SYSTEMS

The physical construction of a flat input in an actual
control system requires the implementation of an actuator
which corresponds to the vector field associated to the
flat input (Waldherr and Zeitz, 2008; Zeitz, 2010). Due
to physical and/or technical constraints, this may not be
possible for any given system, even if in principle a flat
input exists. We refer to this problem as the question of
realizability of the flat input.

Realizability of a flat input is of particular relevance for
mechanical systems. Mechanical systems use generalized
positions, denoted by q, and generalized velocities q̇ as
state variables. Thereby, the derivative of the position is
always equal to the velocity, and it is physically impossible
to build an actuator which affects the position directly.
As is shown in the following example, this fact may pose
a problem for the implementation of a flat input in a
mechanical system.
Example 5. Consider the mechanical system described by
the linear second-order differential equation

q̈ + dq̇ + kq = F, (39)
where d is a damping constant, k is a spring constant,
and F an external controllable force. Assume that the
acceleration y = q̈ is measured, thus the output dimension
p = 1. A state space representation of (39) is obtained by
setting x1 = q and x2 = q̇, yielding

ẋ1 = x2

ẋ2 = −kx1 − dx2 + F

y = −kx1 − dx2.

(40)

For k 6= 0, the system (40) is observable with observability
matrix

Q =
(
−k −d
kd d2 − k

)
. (41)

Solving the equations (26)–(28) for the flat input vector
field yields γ(x) = α(x)(d ∂

∂x1
−k ∂

∂x2
), where α(x) 6= 0 is an

arbitrary function. For d 6= 0, this input is not realizable,
since the physical constraint ẋ1 = x2 cannot be affected
by an actuator.

Most mechanical systems can be described by a system
of second-order differential equations in the generalized
positions q ∈ Rm as

q̈ +D(q, q̇) = F (q, q̇)u. (42)
Thereby, it is typically possible to control the external
forces F (q, q̇)u, though this may also involve technical
constraints which are not addressed in this discussion.
Let us assume that we have a measurement given in the
form y = h(q, q̇) ∈ Rp, which includes position, velocity
and acceleration measurements. A state space model is
constructed by setting xp = q and xv = q̇, yielding

ẋp = xv
ẋv = −D(xp, xv) + F (xp, xv)u
y = h(x),

(43)

with the state variables x = (xT
p , x

T
v )T ∈ R2m. Note that

the input can only enter in the differential equation for xv.
The differential equation for xp cannot be affected by the
input due to the physical constraint that the derivative of
the position is equal to the velocity.

We call a given input vector field physically realizable, if it
is of the form as in (43), i.e. it acts only on the generalized
velocities, not on the generalized positions. In order to
characterize the physical realizability of given flat input
vector fields, we have the following proposition.
Proposition 5. Define the input distribution

I = span{ ∂

∂xm+1
, . . . ,

∂

∂x2m
}. (44)

Let γj(x), j = 1, . . . , p, be flat input vector fields for the
system (43). The corresponding flat inputs are physically

Copyright by IFAC 699



realizable for the mechanical system (42), if and only if all
the vector fields γj(x), j = 1, . . . , p, satisfy

γj(x) ∈ I, (45)
with coordinates as in (43).

Proof. If the vector fields γi(x), i = 1, . . . , p, satisfy
the condition (45), then the flat inputs correspond to
controlled forces in the constitutive equation (42) and
are thus physically realizable. On the other hand, if the
condition (45) is not satisfied, then the flat inputs would
have to act on the differential equation for the generalized
position, and are thus not physically realizable.
Example 6. Consider the mechanical system from Exam-
ple 3. In this system, any choice of the flat input vec-
tor fields γ1(x) = α11(x) ∂

∂x3
+ α12(x) ∂

∂x4
and γ2(x) =

α21(x) ∂
∂x3

+α22(x) ∂
∂x4

with a regular matrix A(x) as given
in (28) satisfies condition (45) and leads to physically
realizable flat inputs in the form of controlled forces.

If the vector fields γj(x) are constructed by means of
τk(x) as defined in (27), the realizability condition (45) can
equivalently be applied to the vector fields τk(x), yielding
τk(x) ∈ I, k = 1, . . . , p. The requirement to realize a
flat input by a physical actuator means that the duality
between a flat output and a flat input is limited to their
mathematical determination.

5. SUMMARY AND CONCLUSIONS

We have generalized the notion of flat inputs, introduced
in (Waldherr and Zeitz, 2008), towards MIMO systems. It
turns out that for systems admitting an observable form,
i.e. systems with observability indices according to Defi-
nition 3, flat inputs exist and their construction is similar
to the SISO case. In particular, one has to solve a system
of linear equations for the vector fields τi(x), i = 1, . . . , p,
whereby the properties of the observability indices ensure
that a unique solution exists. The flat input vector fields
γi(x) are then independent linear combinations of the
solution τi(x). From this it follows that the construction
of flat inputs for observable systems is significantly easier
than finding flat outputs, which requires solving a system
of partial differential equations instead of linear equations.

However, the condition that the system has observability
indices is not necessary for existence of flat inputs in
the MIMO case. To illustrate this, we have presented
an example where two input vector fields were found for
an unobservable system, such that the controlled system
becomes locally observable and differentially flat. Due to
the controlled system being only locally observable, the
state and input parametrizations possess singularities. As
a conclusion, necessary conditions for existence as well as a
systematic construction of flat inputs in the general MIMO
case are still open problems.

A particular problem of flat inputs, specifically for me-
chanical systems, concerns the necessity to realize a flat
input by physical actuators, which is in contrast to the
ficticious nature of flat outputs. In general, the vector
fields constructed for the flat input can violate physical
constraints, making them infeasible for actual implemen-
tation. While it is easily possible to check a posteriori
whether the vector fields are physically realizable or not,

there is not much that one can do if they are not realizable.
In this case, also the output would have to be redesigned
if one wants to obtain a differentially flat system.
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