ADMITdetectOutliersADMITdetectOutliers
ADMITdetectOutliers searches for outlier candidates in the data set of an
infeasible problem.
outliers = ADMITdetectOutliers(problem)
outliers = ADMITdetectOutliers(problem, ops)
outliers = ADMITdetectOutliers(problem, boundSelection)
outliers = ADMITdetectOutliers(problem, boundSelection, ops)
outliers = ADMITdetectOutliers(problem, boundSelection, invertSelection)
outliers = ADMITdetectOutliers(problem, boundSelection, invertSelection, ops)
ADMITdetectOutliers searches for outliers in the explicit upper and lower
bounds by relaxing multiple bounds at once until the problem can no
longer proven to be infeasible. Afterwards a sensitivity analysis using
lagrangian multipliers is performed to determine the influence of the
constraints on the given problem.
This function utilizes the algorithm presented in [1].
NOTE
Usually ADMITdetectOutliers can only find one outlier candidate,
even if multiple outliers exist in the problem's data set. To find more,
the found outlier has to be corrected and ADMITdetectOutliers has to be
called again. See ADMITcorrectOutliers to learn how to do this
automatically.
Please note that only explicit bounds can be found as outliers by
ADMITdetectOutliers. Consider the following example
opt = ADMITproject() + ADMITvariable('x := {real, timeInvariant}') + ...
ADMITconstraint('x := [5 10]') + ...
ADMITconstraint('x < 3');
Then only the constraint x >= 5 is detected as an outlier, not x < 3,
since this constraint does not define an explicit bound for x.
Inputs
problem: A valid ADMITproject or ADMITinfo object describing an
infeasible problem. The problem must not contain
either binary or integer variables.
ops: A valid ADMIToptions object.
boundSelection: A char or cell array describing the set of bounds which
should be relaxed. ADMITdetectOutliers will only look
for outliers in this set of bounds. See the examples
below for the syntax.
If not given, all explicit upper and lower bounds are
selected.
invertSelection: Logical value. If true, the boundSelection will be
inverted, i.e. ADMITdetectOutliers will only relax
those bounds which are not contained in
boundSelection.
Default value is false.
Returns
outliers: Cell array containint the names and bounds of possible
outliers. For example {{'x', 'lower'}, {'y(0.1)', 'upper'}}
cminfo: ADMITcminfo object, for internal use.
Examples for boundSelection
Select the upper and lower bound of the time invariant variable x:
ADMITdetectOutliers(optInfo, 'x');
Select the lower bounds of all variables:
ADMITdetectOutliers(optInfo, {'*', 'lower'})
Select the lower bound of the time invariant variable x and all upper
bounds of the time variant variable y for all time points.
ADMITdetectOutliers(optInfo, {{'x', 'lower'}, {'y(*)', 'upper'}})
Select the upper bound of the time variant variable y at time 0.1.
ADMITdetectOutliers(optInfo, {'y(0.1), 'upper'})
Example
opt = ADMITproject() + ADMITvariable('x := {real, timeInvariant}') + ...
ADMITvariable('y := {real, timeInvariant}') + ...
ADMITconstraint('x := [5, 10]') + ...
ADMITconstraint('y := [2, 7]') + ...
ADMITconstraint('z := [5, 10]') + ...
ADMITconstraint('x+z == 18') + ...
ADMITconstraint('x+y == 18'); % either x or y too low
optInfo = ADMITcompose(opt);
ADMITdetectOutliers(optInfo);
% => {{'x', 'upper'}, {'y', 'upper'}}
ADMITdetectOutliers(optInfo, 'x');
% => {{'x', 'upper'}}
ADMITdetectOutliers(optInfo, 'y');
% => {{'y', 'upper'}}
ADMITdetectOutliers(optInfo, 'z');
% => error message