Systems Theory and Automatic Control

ADMITprintData
ADMIT documentation: ADMITprintData

ADMITprintData

ADMITprintData displays the variable bounds contained in provided
ADMITdata objects.

ADMITprintBounds(OPTDATA,[OPTIONS]) prints every found variable bound
within the provided OPTDATA object

ADMITprintBounds(OPTDATA,VARS,[OPTIONS]) prints bounds for variables
listed in VARS

ADMITprintBounds(OPTDATA,VARS,TYPE,[OPTIONS]) prints bounds on
variables mentioned in VARS of the specified type. Only valid types of
data are allowed (see below)

ADMITprintBounds(OPTDATA,VARS,TYPE,INSTANCE,[OPTIONS]) for the
ADMITdata of type 'MonteCarlo' we can specify which of the instances'
bounds is printed. If non are given, lower and upper bounds over all
instances are derived as bounds

Inputs
  [...]     : square brackets notify that input is optional.
  OPTDATA   : valid ADMITdata object
  VARS   : string with the name of specie or cell array of strings
  TYPE      : string with the type of data or cell array of strings
              currently supported types of data (other will be ignored):
              'Estimate','Initial','Processed','Raw','MonteCarlo'
  INSTANCE  : positive integer that specifies the Monte-Carlo instance
              for printing the bounds
  OPTIONS   : valid ADMIToptions object

Examples

% Add data stored in matrices
% (note: you can use csvread,xlsread,... and other MatLab-functions to
% read data from CSV,EXCEL,... files!)
dataMean     = [1.5,1.9,1.3,1.7,2,1.6];
dataVariance = [0.15,0.2,0.15,0.1,0.15,0.1];
dataTime     = [0,1,2,3,4,5];
% assume lower/upper bounds to correspond to -/+ standard-deviation
dataLB       = dataMean - sqrt(dataVariance);
dataUB       = dataMean + sqrt(dataVariance);
% import
OPTDATA = ADMITimportData('x1',dataTime,dataLB,dataUB)
OPTDATA = ADMITprocessData(OPTDATA,'x1',[0:0.3:5],0,0,'interpolate');
ADMITplot(OPTDATA,'x1')
ADMITprintData(OPTDATA,'x1','Processed')